在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(4,0),與y軸交于點(diǎn)C,且OC=2.現(xiàn)有四張正面分別標(biāo)有數(shù)字-2,2,-4,4的不透明卡片,它們除數(shù)字不同外其余全部相同.將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字的倒數(shù)記為p,則卡片上的數(shù)字滿足p=a的概率為   
【答案】分析:先根據(jù)二次函數(shù)的交點(diǎn)式:y=a(x-x1)(x-x2)(a,b,c是常數(shù),a≠0),代入坐標(biāo)求出函數(shù)解析式,從而得到a的值,再求出-2,2,-4,4的倒數(shù),與a的值比較,根據(jù)概率公式即可求解.
解答:解:設(shè)二次函數(shù)的交點(diǎn)式:y=a(x-x1)(x-x2)(a,b,c是常數(shù),a≠0),
∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(4,0),與y軸交于點(diǎn)C,且OC=2.
∴a(0+1)(0-4)=-2或a(0+1)(0-4)=2,
解得a=或a=-,
∵-2,2,-4,4的倒數(shù)分別為,-,-,
∴卡片上的數(shù)字滿足p=a的概率為2÷4=
故答案為:
點(diǎn)評:考查了拋物線與x軸的交點(diǎn),概率公式.本題的關(guān)鍵是根據(jù)二次函數(shù)的交點(diǎn)式求得函數(shù)解析式;概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對稱軸是x=1,并且經(jīng)過(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請你直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個動點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動過程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長;
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊答案