如圖,在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,點(diǎn)P從A出發(fā)向C以1cm/s的速度運(yùn)動(dòng)、點(diǎn)Q同時(shí)從C出發(fā)向B以1cm/s的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),該點(diǎn)停止運(yùn)動(dòng),另一個(gè)點(diǎn)繼續(xù)運(yùn)動(dòng),當(dāng)兩個(gè)點(diǎn)都到達(dá)終點(diǎn)時(shí)也停止運(yùn)動(dòng).
(1)幾秒后,△CPQ的面積為Rt△ABC的面積的
(2)填空:①點(diǎn)經(jīng)過(guò)______秒,點(diǎn)P在線段AB的垂直平分線上.
②點(diǎn)Q經(jīng)過(guò)______秒,點(diǎn)Q在∠BAC的平分線上.

【答案】分析:(1)設(shè)經(jīng)過(guò)x秒,首先求得線段BC的長(zhǎng),然后分x≤6和6<x≤8兩種情況列方程求解即可;
(2)①點(diǎn)P在線段AB的垂直平分線上,即可得到PA=PB,從而求得時(shí)間;
②點(diǎn)Q在∠BAC的平分線上,則Q點(diǎn)到AC和AB的距離相等.
解答:解;(1)設(shè)經(jīng)過(guò)x秒.
在Rt△ABC中,
根據(jù)題意得;
當(dāng)x≤6時(shí),(8-x)x=××8×6
解得:
當(dāng)6<x≤8時(shí),(8-x)×6=37
解得:x=7
答:經(jīng)過(guò)7秒或秒.
(2)當(dāng)點(diǎn)P在線段AB的垂直平分線上時(shí),PA=PB,
∵設(shè)經(jīng)過(guò)x秒后點(diǎn)P在線段AB的垂直平分線上,
∴x2=(8-x)2+62
解得:x=
∴經(jīng)過(guò)秒,點(diǎn)P在線段AB的垂直平分線上
②如圖,作QD⊥AB于點(diǎn)D,
∵點(diǎn)Q在∠BAC的平分線上,
∴QD=QC,
設(shè)經(jīng)過(guò)x秒,
則CQ=x,則QD=(6-x),
∴x=(6-x),解得:x=,
∴點(diǎn)Q經(jīng)過(guò)秒,點(diǎn)Q在∠BAC的平分線上.
點(diǎn)評(píng):本題考查了一元二次方程、角平分線的性質(zhì)、垂直平分線的性質(zhì)及勾股定理的知識(shí),解題的關(guān)鍵是根據(jù)相關(guān)性質(zhì)設(shè)出未知數(shù)并列出方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案