【答案】
分析:(1)根據(jù)MC的函數(shù)式不難得出C點的坐標(biāo)應(yīng)該是(0,-3),即c=-3,那么要求拋物線的解析式還缺少一個點的坐標(biāo),可根據(jù)OC=3,以及∠BCO的余弦值在直角三角形BCO中運用勾股定理求出OB的長,也就得出了B的坐標(biāo),進而可求出拋物線的解析式.
(2)假設(shè)存在這樣的點P,那么要分兩種情況進行討論:
①當(dāng)PN是另外一條直角邊時,可先求出直線MC的函數(shù)解析式,然后確定出N點的坐標(biāo),如果PN與y軸的交點為N,那么直角三角形CND應(yīng)該是個等腰直角三角形(∠OCN=45°),因此可求出OD的長,也就得出了D的坐標(biāo),然后可確定出直線PN的解析式,然后聯(lián)立拋物線和PN所在直線的解析式即可求出此時交點P的坐標(biāo).
②當(dāng)PC是另外一條直角邊時,連接AC可發(fā)現(xiàn),AC⊥CN(∠ACO=∠NCO=45°),而C點又正好在拋物線上,因此P與A重合,那么P點的坐標(biāo)就是A點的坐標(biāo).
(3)①先求上移的單位,可先設(shè)出平移后的二次函數(shù)的解析式,然后聯(lián)立拋物線和直線NQ即MC的解析式,然后可得出一個一元二次方程,要想使兩函數(shù)有交點,那么△≥0,以此可求出平移單位的取值范圍,也就可求出最大的平移值.
②要求向下平移的最大單位,可求出當(dāng)Q,N正好在拋物線上時,b的取值,那么根據(jù)MC的直線解析式,可得出Q,N點的坐標(biāo),那么當(dāng)Q,N正好在拋物線上時,可用Q,N得出b的值,然后即可求出向下平移的最大單位.
解答:解:(1)∵直線MC的函數(shù)表達式y(tǒng)=kx-3.
∴點C(0,-3)
∴cos∠BCO=
=
∴可設(shè)|OC|=3t(t>0),|BC|=
t
則由勾股定理,得|OB|=t
而|OC|=3t=3,
∴t=1
∴|OB|=1,
∴點B(1,0)
∵點B(1,0)C(0,-3)在拋物線上
∴
,
解得
,
∴拋物線的函數(shù)表達式為y=(x+1)
2-4=x
2+2x-3.
(2)假設(shè)在拋物線上存在異于點C的點P,使以N,P,C為頂點的三角形是以NC為一條直角邊的直角三角形,
①若PN為另一條直角邊
∵點M(-1,-4)在直線MC上,
∴-4=-k-3,即k=1
∴直線MC的函數(shù)表達式為y=x-3
易得直線MC與x軸的交點N的坐標(biāo)為N(3,0)
∵|OC|=|ON|
∴∠CNO=45°
∴在y軸上取點D(0,3),
連接ND交拋物線于點P
∵|ON|=|OD|
∴∠DNO=45°
設(shè)直線ND的函數(shù)表達式為y=mx+n
由
得
∴直線ND的函數(shù)表達式為y=-x+3
設(shè)點P(x,-x+3),代入拋物線的函數(shù)表達式,
得-x+3=x
2+2x-3,
即x
2+3x-6=0
解得x
1=
,x
2=
∴y
1=
,y
2=
∴滿足條件的點為P
1(
,
),p
2(
,
).
②若PC是另外一條直角邊
∵點A是拋物線與x軸的另一交點,
∴點A的坐標(biāo)為(-3,0)
連接AC,∵|OA|=|OC|,
∴∠OCA=45°,又∠OCN=45°
∴∠ACN=90°,
∴點A就是所求的點p
3(-3,0)
綜上所述,在拋物線上存在滿足條件的點,有3個,
分別為:P
1(
,
),p
2(
,
),p
3(-3,0).
(3)若拋物線沿其對稱軸向上平移,
設(shè)向上平移b(b>0)個單位可設(shè)函數(shù)表達式為y=x
2+2x-3+b
由
,
得x
2+x+b=0.
∴要使拋物線與線段NQ總有交點,
必須△=1-4b≥0,即b≤
,
∴0<b≤
∴若拋物線向上平移,最多可平移
個單位長度.
②若拋物線沿其對稱軸向下平移,設(shè)向下平移b(b>0)個單位
可設(shè)函數(shù)表達式為y=x
2+2x-3-b
∵當(dāng)x=-3時,y=-b,當(dāng)x=3時,y=12-b
易求得Q(-3,-6),又N(3,0)
∴要使拋物線與線段NQ總有交點,必須
-b≥-6或12-b≥0,即b≤6或b≤12
∴0<b≤12
∴若拋物線沿其對稱軸向下平移,最多可平移12個單位長度
綜上可知,若拋物線沿其對稱軸向下平移,使拋物線與線段NQ總有公共點,
則向上最多可平移
個單位長度,向下最多可平移12個單位長度.
點評:本題的關(guān)鍵是在于根據(jù)已知條件確定二次函數(shù)的解析式以及二次函數(shù)平移后解析式的變化情況,
要注意的是(2)中要分另一條直角邊的不同進行分類討論,不要漏解.