如圖,線段AB是⊙O的直徑,⊙O交線段BC于D,且D是BC中點,DE⊥AC于E,連接AD,則下列結(jié)論正確的個數(shù)是( )
①CE•CA=CD•CB;②∠EDA=∠B;③OA=AC;④DE是⊙O的切線;⑤AD2=AE•AB.

A.2個
B.3個
C.4個
D.5個
【答案】分析:由DE與AC垂直,得到三角形CDE為直角三角形,而由AB為圓的直徑,根據(jù)直徑所對的圓周角為90°,得到AD與BC垂直,又D為BC中點,進(jìn)而得到AD垂直平分BC,根據(jù)線段垂直平分線的性質(zhì)得到AC與AB相等,故三角形ABC不是直角三角形,所以三角形CDE與ABC不相似,CE•CA與CD•CB不相等,選項①錯誤;由O為AB中點,得到AO為AB的一半,故AO為AC的一半,選項③正確;由OD為三角形ABC的中位線,根據(jù)三角形的中位線定理得到OD與AC平行,由AC與DE垂直得到OD與DE垂直,即∠ODE為90°,故DE為圓O的切線,選項④正確;由兩對對應(yīng)角相等得到三角形ADE與三角形ACD相似,根據(jù)對應(yīng)邊成比例得到選項⑤正確,從而得到所有正確選項的個數(shù).
解答:解:顯然,△CED為直角三角形,而△ABC不是直角三角形,故兩三角形不相似,
所以CE•CA≠CD•CB,選項①錯誤;
連接OD,∵D為BC中點,O為AB中點,
∴DO為△ABC的中位線,
∴OD∥AC,
又DE⊥AC,∴∠DEA=90°,
∴∠ODE=90°,
∴DE為圓O的切線,選項④正確;
又OB=OD,∴∠ODB=∠B,
∵AB為圓O的直徑,∴∠ADB=90°,
∵∠EDA+∠ADO=90°,∠BDO+∠ADO=90°,
∴∠EDA=∠BDO,
∴∠EDA=∠B,選項②正確;
由D為BC中點,且AD⊥BC,
∴AD垂直平分BC,
∴AC=AB,又OA=AB,
∴OA=AC,選項③正確;
∵∠DAC=∠EAD,∠DEA=∠CDA=90°,
∴△ADE∽△ACD,
=,即AD2=AE•AB,選項⑤正確;
則正確結(jié)論的個數(shù)為4個.
故選C.
點評:此題考查了相似三角形的判定與性質(zhì),切線的判定,及三角形的中位線定理.證明切線時連接OD是解這類題經(jīng)常連接的輔助線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,線段AB是⊙O的直徑,⊙O交線段BC于D,且D是BC中點,DE⊥AC于E,連接AD,則下列結(jié)論正確的個數(shù)是( 。
①CE•CA=CD•CB;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切線;⑤AD2=AE•AB.
A、2個B、3個C、4個D、5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

如圖,線段AB是線段CD經(jīng)過平移得到的,那么線段ACBD的關(guān)系為( ).

A.相等    B.平行

C.平行且相等 D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,線段AB是⊙O的直徑,⊙O交線段BC于D,且D是BC中點,DE⊥AC于E,連接AD,則下列結(jié)論正確的個數(shù)是
①CE•CA=CD•CB;②∠EDA=∠B;③OA=數(shù)學(xué)公式AC;④DE是⊙O的切線;⑤AD2=AE•AB.


  1. A.
    2個
  2. B.
    3個
  3. C.
    4個
  4. D.
    5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖若線段AB是由線段CD平移面得到的,則線段ABCD的關(guān)系是___且___.

 

 

 

 


查看答案和解析>>

同步練習(xí)冊答案