已知:如圖,矩形ABCD的對角線AC和BD相交于點O,AC=2AB.求證:∠AOD=120°.

證明:∵四邊形ABCD是矩形,
∴∠ABC=90°(矩形的四個角都是直角),
∵在Rt△ABC中,AC=2AB,
∴∠ACB=30°,
∵四邊形ABCD是矩形,
∴OB=OD=BD,OC=OA=AC,AC=BD,
∴BO=CO,
∴∠OBC=∠OCB=30°,
∵∠OBC+∠OCB+∠BOC=180°,
∴∠BOC=120°,
∴∠AOD=∠BOC=120°.
分析:推出∠ABC=90°,求出∠ACB=30°,根據矩形性質求出OB=OC,求出∠OBC和∠OCB的度數(shù),求出∠BOC,即可求出∠AOD.
點評:本題考查了等腰三角形性質,三角形的內角和定理,含30度角的直角三角形性質,矩形的性質的應用,主要考查學生運用定理進行推理和計算的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,矩形ABCD中,E、F是AB上的兩點,且AF=BE.求證:∠ADE=∠BCF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、已知,如圖,矩形ABCD中,E是CD的中點,連接BE并延長BE交AD的延長線于點F,連接AE.
(1)求證:AD=DF;
(2)若AD=3,AE⊥BE,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,矩形ABCD中,AD=6,DC=7,菱形EFGH的三個頂點E,G,H分別在矩形ABCD的邊AB,CD,DA精英家教網上,AH=2,連接CF.
(1)若DG=2,求證四邊形EFGH為正方形;
(2)若DG=6,求△FCG的面積;
(3)當DG為何值時,△FCG的面積最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,矩形ABCD中,點E在邊AB上,∠DEB的平分線EF交BC的延長線于點F,且AB=BF,連接DF.
(1)若tan∠FDC=
12
,AD=1,求DF的長;
(2)求證:DE=BE+CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案