已知OA、OB是⊙O的兩條半徑,且OA⊥BC,C為OB延長線上任意一點,過點C作CD切⊙O于點D,連接AD,交OC過于點E。
(1)求證:CD=CE;
(2)若將圖1中的半徑OB所在的直線向上平行移動,交⊙O于,其他條件不變,如圖2,那么上述結(jié)論CD=CE還成立嗎?為什么?
見解析
解析試題分析:(1)連接OD,則OD⊥CD,∠CDE+∠ODA=90°,在Rt△AOE中,∠AEO+∠A=90°,再由OA=OD根據(jù)等邊對等角可得∠A=∠ODA,∠CDE=∠AEO,即可得到結(jié)論;
(2)將原來的半徑OB所在直線向上平行移動,可得CF⊥AO于F,在Rt△AFE中,∠A+∠AEF=90°,
連接OD,則∠ODA+∠CDE=90°,再由OA=OD根據(jù)等邊對等角可得∠A=∠ODA,∠AEF=∠CDE,即可知結(jié)論仍然成立.
(1)△CDE是等腰三角形.理由如下:
連接OD,則OD⊥CD,∠CDE+∠ODA=90°;
在Rt△AOE中,∠AEO+∠A=90°,
在⊙O中,∵OA=OD,
∴∠A=∠ODA,∠CDE=∠AEO,
又∵∠AEO=∠CED,
∴∠CED=∠CDE,
∴CD=CE,
即△CDE是等腰三角形;
(2)結(jié)論仍然成立.理由如下:
∵將原來的半徑OB所在直線向上平行移動,
∴CF⊥AO于F,
在Rt△AFE中,∠A+∠AEF=90°,
連接OD,則∠ODA+∠CDE=90°,且OA=OD,
故可得∠A=∠ODA,∠AEF=∠CDE,
又∵∠AEF=∠CED,
∴∠CED=∠CDE,
∴CD=CE.
故△CDE是等腰三角形.
考點:本題考查的是圓的綜合應(yīng)用,等腰三角形的判定與性質(zhì)
點評:解答本題的關(guān)鍵是掌握好圓的性質(zhì),靈活運用等邊對等角,等角對等邊,選擇合適的條件,再結(jié)合等量代換等數(shù)學(xué)方法求解。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com