已知是正整數(shù),則奇數(shù)可以用代數(shù)式來表示.

(1)分解因式: ;

(2)我們把所有”奇數(shù)的平方減去1”所得的數(shù)叫”白銀數(shù)”,則所有”白銀數(shù)”的最大公約數(shù)是多少?請簡要說明理由.


解: (1)

(2) 所有”白銀數(shù)”的最大公約數(shù)是8

∵n正整數(shù),則n與n+1必有一個偶數(shù),∴n(n+1)必是2的倍數(shù),則4n(n+1)必是8的倍數(shù),

∴所有”白銀數(shù)”的最大公約數(shù)是8……………2分


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


已知直線AC: 與直線BC:相交于點C,分別交x軸于點A、B,P為x軸上的一點,設P(m,0),以點P為圓心作圓:

(1)若-4<m <6.當m=______時,⊙P同時與AC、BC相切;

(2)設⊙P的半徑為3,當m=_______時,⊙P與直線AC、直線BC中的一條相切。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


分解因式x(x+4)+4的結果             

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


一次函數(shù),若的增大而增大,則的值可以是(    )

(A)1       (B)2      (C)3      (D)4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


數(shù)據(jù)1、5、6、5、6、5、6、6的眾數(shù)是          ,方差是        . 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


點A(-1,0)B(4,0)C(0,2)是平面直角坐標系上的三點。

① 如圖1先過A、B、C作△ABC,然后在在軸上方作一個正方形D1E1F1G1,

使D1E1在AB上, F1、G1分別在BC、AC上

② 如圖2先過A、B、C作圓⊙M,然后在軸上方作一個正方形D2E2F2G2,

使D2E2軸上 ,F(xiàn)2、G2在圓上

③ 如圖3先過A、B、C作拋物線,然后在軸上方作一個正方形D3E3F3G3,

使D3E3軸上, F3、G3在拋物線上

請比較 正方形D1E1F1G1 , 正方形D2E2F2G2 , 正方形D3E3F3G3 的面積大小

 


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知扇形的圓心角為60°,半徑為1,則扇形的弧長為(  )

 

A.

B.

π

C.

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


數(shù)學活動﹣求重疊部分的面積

(1)問題情境:如圖①,將頂角為120°的等腰三角形紙片(紙片足夠大)的頂點P與等邊△ABC的內(nèi)心O重合,已知OA=2,則圖中重疊部分△PAB的面積為  

(2)探究1:在(1)的條件下,將紙片繞P點旋轉至如圖②所示位置,紙片兩邊分別與AC,AB交于點E,F(xiàn),圖②中重疊部分的面積與圖①重疊部分的面積是否相等?如果相等,請給予證明;如果不相等,請說明理由.

(3)探究2:如圖③,若∠CAB=α(0°<α<90°),AD為∠CAB的角平分線,點P在射線AD上,且AP=2,以P為頂點的等腰三角形紙片(紙片足夠大)與∠CAB的兩邊AC,AB分別交于點E、F,∠EPF=180°﹣α,求重疊部分的面積.(用α或的三角函數(shù)值表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉90°,180°,270°后形成的圖形.若∠BAD=60°,AB=2,則圖中陰影部分的面積為 

查看答案和解析>>

同步練習冊答案