已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)直線BF垂直于直線CE,交CE于點(diǎn)F,交CD于點(diǎn)G(如圖①),求證:AE=CG;
(2)直線AH垂直于直線CE,交CE的延長線于點(diǎn)H,交CD的延長線于點(diǎn)M(如圖②),找出圖中與BE相等的線段,并證明.
⑴證明:設(shè)∠ACE=∠1,因?yàn)橹本BF垂直于CE,交CE于點(diǎn)F,所以∠CFB=90°,
所以∠ECB+∠CBF=90°.
又因?yàn)椤?+∠ECB=90°,所以∠1=∠CBF .
因?yàn)?i>AC=BC, ∠ACB=90°,所以∠A=∠CBA=45°.
又因?yàn)辄c(diǎn)D是AB的中點(diǎn),所以∠DCB=45°.
因?yàn)椤?=∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.
(2)解:CM=BE.證明如下:因?yàn)椤?i>ACB=90°,所以∠ACH +∠BCF=90°.
因?yàn)?CH⊥AM,即∠CHA=90°,所以 ∠ACH +∠CAH=90°,所以∠BCF=∠CAH.
因?yàn)?CD為等腰直角三角形斜邊上的中線,所以 CD=AD.所以∠ACD=45°.
在△CAM與△BCE中,CA=BC,∠CAH =∠BCF, ∠ACM =∠CBE,
所以 △CAM ≌△BCE,所以CM=BE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
1 |
a |
a2-2a+1 |
a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com