作业宝如圖,公園要在一個(gè)圓形的噴水池中央垂直于水面處安裝一個(gè)柱子OA,O恰在水面中心,OA=1.25m,由柱子頂端A處的噴頭向外噴水,水流在各個(gè)方向沿形狀相同的拋物線(xiàn)路線(xiàn)落下,為使水流形狀較為漂亮,要求設(shè)計(jì)成水流在離叫的距離為1m處達(dá)到距水面的距離最大,高度為2.25m.若不計(jì)其它因素,那么水池的半徑至少要多少米才能使噴出的水流不致落到池外?

解:以O(shè)為原點(diǎn),頂點(diǎn)為(1,2.25),
設(shè)解析式為y=a(x-1)2+2.25過(guò)點(diǎn)(0,1.25),
解得a=-1,
所以解析式為:y=-(x-1)2+2.25,
令y=0,
則-(x-1)2+2.25=0,
解得x=2.5 或x=-0.5(舍去),
所以水池的半徑至少要2.5米才能使噴出的水流不致落到池外.
分析:根據(jù)已知得出二次函數(shù)的頂點(diǎn)坐標(biāo),即可利用頂點(diǎn)式得出二次函數(shù)解析式,令y=0,則-(x-1)2+2.25=0,求出x的值即可得出答案.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的應(yīng)用,根據(jù)頂點(diǎn)式求出二次函數(shù)的解析式是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

武漢歡樂(lè)谷要建一個(gè)圓形噴水池,如圖所示,計(jì)劃在噴水池的周邊靠近水面的位置安裝一圓噴水頭,時(shí)噴出的水柱在離池中心4m處達(dá)到最高,高度為6m,另外還要再?lài)娝氐闹行脑O(shè)計(jì)一個(gè)裝飾水壇,使各方向噴來(lái)的水柱在此匯合,已知裝飾水壇的高度為
10
3
m.
(1)建立平面直角坐標(biāo)系,使拋物線(xiàn)水柱最高坐標(biāo)為(4,6),裝飾水壇最高坐標(biāo)為(0,
10
3
),求圓形噴水池的半徑.
(2)為防止游客戲水出現(xiàn)危險(xiǎn),公園再?lài)娝貎?nèi)設(shè)置了一個(gè)六方形隔離網(wǎng).如圖,若該六邊形被圓形噴水池的直徑AB平分為兩個(gè)相同的等腰梯形,那么,當(dāng)該等腰梯形的腰AD長(zhǎng)為多少時(shí),該梯形周長(zhǎng)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

武漢歡樂(lè)谷要建一個(gè)圓形噴水池,如圖所示,計(jì)劃在噴水池的周邊靠近水面的位置安裝一圓噴水頭,時(shí)噴出的水柱在離池中心4m處達(dá)到最高,高度為6m,另外還要再?lài)娝氐闹行脑O(shè)計(jì)一個(gè)裝飾水壇,使各方向噴來(lái)的水柱在此匯合,已知裝飾水壇的高度為
數(shù)學(xué)公式m.
(1)建立平面直角坐標(biāo)系,使拋物線(xiàn)水柱最高坐標(biāo)為(4,6),裝飾水壇最高坐標(biāo)為(0,數(shù)學(xué)公式),求圓形噴水池的半徑.
(2)為防止游客戲水出現(xiàn)危險(xiǎn),公園再?lài)娝貎?nèi)設(shè)置了一個(gè)六方形隔離網(wǎng).如圖,若該六邊形被圓形噴水池的直徑AB平分為兩個(gè)相同的等腰梯形,那么,當(dāng)該等腰梯形的腰AD長(zhǎng)為多少時(shí),該梯形周長(zhǎng)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年湖北省武漢市中考數(shù)學(xué)模擬試卷(十二)(解析版) 題型:解答題

武漢歡樂(lè)谷要建一個(gè)圓形噴水池,如圖所示,計(jì)劃在噴水池的周邊靠近水面的位置安裝一圓噴水頭,時(shí)噴出的水柱在離池中心4m處達(dá)到最高,高度為6m,另外還要再?lài)娝氐闹行脑O(shè)計(jì)一個(gè)裝飾水壇,使各方向噴來(lái)的水柱在此匯合,已知裝飾水壇的高度為
m.
(1)建立平面直角坐標(biāo)系,使拋物線(xiàn)水柱最高坐標(biāo)為(4,6),裝飾水壇最高坐標(biāo)為(0,),求圓形噴水池的半徑.
(2)為防止游客戲水出現(xiàn)危險(xiǎn),公園再?lài)娝貎?nèi)設(shè)置了一個(gè)六方形隔離網(wǎng).如圖,若該六邊形被圓形噴水池的直徑AB平分為兩個(gè)相同的等腰梯形,那么,當(dāng)該等腰梯形的腰AD長(zhǎng)為多少時(shí),該梯形周長(zhǎng)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案