如圖,圓內(nèi)兩條弦互相垂直,其中一條AB被分成3和4兩段,另一條CD被分成2和6兩段,求此圓的直徑.

過(guò)O作OE⊥AB于E,OF⊥CD于F,連接OC,
則由垂徑定理得:AE=BE=
1
2
AB=
1
2
×(3+4)=
7
2
,CF=DF=
1
2
×(2+6)=4,
∵CD⊥AB,
∴∠OEP=∠OFP=∠EPF=90°,
∴四邊形OEPF是矩形,
∴PE=OF=AP-AE=4-
7
2
=
1
2
,
在Rt△CFO中,由勾股定理得:OC=
42-(
1
2
)2
=
62
2
,
∴⊙O的直徑是2OC=
62

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將圖中線段AB繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°后,得到線段AB′,則點(diǎn)B′的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

“兩龍”高速公路是目前我省高速公路隧道和橋梁最多的路段.如圖,是一個(gè)單心圓曲隧道的截面,若路面AB寬為10米,凈高CD為7米,則此隧道單心圓的半徑OA是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圓的半徑為13,兩弦ABCD,AB=24,CD=10,則兩弦的距離是( 。
A.7或17B.17C.12D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點(diǎn)E.若EB=8cm,CD=24cm,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一破損光盤如圖所示,測(cè)得所剩圓弧兩端點(diǎn)間的距離AB長(zhǎng)為8厘米,弧的中點(diǎn)到弧所對(duì)弦的距離為2厘米,則這個(gè)光盤的半徑是______厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦(非直徑)CD⊥AB,P是⊙O上不同于C、D的任一點(diǎn).
(1)當(dāng)點(diǎn)P在劣弧CD上運(yùn)動(dòng)時(shí),∠APC與∠APD的關(guān)系如何?請(qǐng)證明你的結(jié)論;
(2)當(dāng)點(diǎn)P在優(yōu)弧CD上運(yùn)動(dòng)時(shí),∠APC與∠APD的關(guān)系如何?請(qǐng)證明你的結(jié)論(不要求討論P(yáng)點(diǎn)與A點(diǎn)重合的情形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上任意一點(diǎn)(不與點(diǎn)A、B重合),連接CO并延長(zhǎng)CO交⊙O于點(diǎn)D,連接AD.
(1)弦AB=______(結(jié)果保留根號(hào));
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知⊙O的半徑為r,那么,垂直平分半徑的弦的長(zhǎng)是(  )
A.
3
2
r
B.2
3
r
C.
3
r
D.4
3
r

查看答案和解析>>

同步練習(xí)冊(cè)答案