(本題12分)
如圖1,已知,,.是射線上的動(dòng)點(diǎn)(點(diǎn)與點(diǎn)不重合),是線段的中點(diǎn).
(1)設(shè),的面積為,求關(guān)于的函數(shù)解析式,并寫出函數(shù)的定義域;
(2)如果以線段為直徑的圓與以線段為直徑的圓外切,求線段的長(zhǎng);
(3)連接,交線段于點(diǎn),如果以為頂點(diǎn)的三角形與相似,求線段的長(zhǎng).
(1) 且 ;
(2)。
【解析】本題主要考查了直角梯形的性質(zhì),中位線定理以及相似三角形的性質(zhì)等知識(shí)點(diǎn),(3)中要根據(jù)不同的對(duì)應(yīng)角相等來(lái)分情況討論,不要漏解。
(1)△ABM中,已知了AB的長(zhǎng),要求面積就必須求出M到AB的距離,如果連接AB的中點(diǎn)和M,那么這條線就是直角梯形的中位線也是三角形ABM的高,那么AB邊上的高就是(AD+BE)的一半,然后根據(jù)三角形的面積公式即可得出y,x的函數(shù)關(guān)系式;
(2)根據(jù)以AB,DE為直徑的圓外切,那么可得出的是AD+BC=AB+DE,那么可根據(jù)BE,AD的差和AB的長(zhǎng),用勾股定理來(lái)表示出DE,然后根據(jù)上面分析的等量關(guān)系得出關(guān)于x的方程,即可求出x的值,即BE的長(zhǎng);
(3)如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因?yàn)锳D∥BC,如果兩角相等,那么M與D重合,顯然不合題意.因此本題分兩種情況進(jìn)行討論:
①當(dāng)∠ADN=∠BME時(shí),∠DBE=∠BME,因此三角形BDE和MBE相似,可得出關(guān)于DE,BE,EM的比例關(guān)系式,即可求出x的值.
②當(dāng)∠AND=∠BEM時(shí),∠ADB=∠BEM,可根據(jù)這兩個(gè)角的正切值求出x的值.
(1)過(guò)點(diǎn)M作MF⊥AB 垂足為F
則MF是梯形的中位線
∴MF= ……………………………1分
∴
即 且 ………………3分
(2)
連結(jié)點(diǎn)M、F,過(guò)點(diǎn)D作DH⊥BC,垂足為H
…………5分
解得 ……………………………………6分
(3)設(shè)線段BE=x
易證∠DAM=∠EBM
①當(dāng)∠ADB=∠MEB時(shí)
∵AD∥BE ∴∠AND=∠DBE
∴∠DBE=∠DEB 易得BE=2AD=8 ……………8分
②當(dāng)∠ADB=∠BME時(shí)
∠ADB=∠BMC=∠DBC
又∵∠BMC=∠DMB+∠BDM
∴∠BDM=∠MBC ∴△BDE∽△MBE………………10分
∴ ∴
∵
∴
解得 ………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點(diǎn)y軸上,,,B點(diǎn)坐標(biāo)為(4,0).點(diǎn)是邊上一點(diǎn),且.點(diǎn)、分別從、同時(shí)出發(fā),以1厘米/秒的速度分別沿、向點(diǎn)運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.⊙E半徑為,設(shè)運(yùn)動(dòng)時(shí)間為秒。
(1)求直線BC的解析式。
(2)當(dāng)為何值時(shí),?
(3)在(2)問(wèn)條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點(diǎn)的坐標(biāo)。如果不相切,說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題12分)如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),D是△ABC外的一點(diǎn), ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當(dāng)=150°時(shí),試判斷△AOD 的形狀,并說(shuō)明理由;
(3)探究:當(dāng)為多少度時(shí),△AOD是等腰三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本題12分)如圖,正方形ABCD的邊長(zhǎng)是2,邊BC在x軸上,邊AB在y軸上,,將一把三角尺如圖放置,其中M為AD的中點(diǎn),逆時(shí)針旋轉(zhuǎn)三角尺.
(1)當(dāng)三角尺的一邊經(jīng)過(guò)C點(diǎn)時(shí),此時(shí)三角尺的另一邊和AB邊交于點(diǎn),求此時(shí)直線PM的解析式;
(2)繼續(xù)旋轉(zhuǎn)三角尺,三角尺的一邊與x軸交于點(diǎn)G, 三角尺的另一邊與AB交于,PM的延長(zhǎng)線與CD的延長(zhǎng)線交于點(diǎn)F,若三角形GF的面積為4,求此時(shí)直線PM的解析式;
(3)當(dāng)旋轉(zhuǎn)到三角尺的一邊經(jīng)過(guò)點(diǎn)B,另一直角邊的延長(zhǎng)線與x軸交于點(diǎn)G,,求此時(shí)三角形GOF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年人教版九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本題12分)如圖,已知拋物線y=x2+3與x軸交于點(diǎn)A、B,與直線y=x+b相交于點(diǎn)B、C,直線y=x+b與y軸交于點(diǎn)E.
(1)寫出直線BC的解析式;
(2)求△ABC的面積;
(3)若點(diǎn)M在線段AB上以每秒1個(gè)單位長(zhǎng)度的速度從A向B運(yùn)動(dòng)(不與A、B重合),同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長(zhǎng)度的速度從B向C運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為t秒,請(qǐng)寫出△MNB的面積s與t的函數(shù)關(guān)系式,并求出點(diǎn)M運(yùn)動(dòng)多少時(shí)間時(shí),△MNB的面積最大,最大面積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com