閱讀下面的材料:
小明遇到一個(gè)問題:如圖(1),在□ABCD中,點(diǎn)E是邊BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交射線CD于點(diǎn)G.如果,求的值.
他的做法是:過點(diǎn)E作EH∥AB交BG于點(diǎn)H,則可以得到△BAF∽△HEF.
請(qǐng)你回答:(1)AB和EH的數(shù)量關(guān)系為???? ,CG和EH的數(shù)量關(guān)系為???? ,的值為???? .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為???? (用含a的代數(shù)式表示).
(3)請(qǐng)你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點(diǎn)E是BC延長(zhǎng)線上一點(diǎn),AE和BD相交于點(diǎn)F. 如果,那么的值為???? (用含m,n的代數(shù)式表示).
(1)3,2,;(2);(3)mn.
【解析】
試題分析:(1)過E點(diǎn)作平行線,構(gòu)造相似三角形,利用相似三角形和中位線的性質(zhì),分別將各相關(guān)線段均統(tǒng)一用EH來(lái)表示,最后求得比值;
(2)先作EH∥AB交BG于點(diǎn)H,得出△EFH∽△AFB,即可得出,再根據(jù)AB=CD,表示出CD,根據(jù)平行線的性質(zhì)得出△BEH∽△BCG,即可表示出,從而得出的值;
(3)先過點(diǎn)E作EH∥AB交BD的延長(zhǎng)線于點(diǎn)H,得出EH∥AB∥CD,根據(jù)EH∥CD,得出△BCD∽△BEH,再進(jìn)一步證出△ABF∽△EHF,從而得出的值.
試題解析:(1)過點(diǎn)E作EH∥AB交BG于點(diǎn)H,
則有△ABF∽△HEF,
∴,
∴AB=3EH.
∵平行四邊形ABCD中,EH∥AB,
∴EH∥CD,
又∵E為BC中點(diǎn),
∴EH為△BCG的中位線,
∴CG=2EH,
∴;
(2)作EH∥AB交BG于點(diǎn)H,則△EFH∽△AFB,
∴,
∴AB=aEH.
∵AB=CD,
∴CD=aEH.
∵EH∥AB∥CD,
∴△BEH∽△BCG.
∴,
∴CG=2EH.
∴;
(3)過點(diǎn)E作EH∥AB交BD的延長(zhǎng)線于點(diǎn)H,則有EH∥AB∥CD,
∵EH∥CD,
∴△BCD∽△BEH,
∴,
∴CD=nEH.
又,
∴AB=mCD=mnEH.
∵EH∥AB,
∴△ABF∽△EHF,
∴.
考點(diǎn):相似形綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆北京市西城區(qū)(北區(qū))九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題
閱讀下面的材料:
小明在學(xué)習(xí)中遇到這樣一個(gè)問題:若1≤x≤m,求二次函數(shù)的最大值.他畫圖研究后發(fā)現(xiàn),和時(shí)的函數(shù)值相等,于是他認(rèn)為需要對(duì)進(jìn)行分類討論.
他的解答過程如下:
∵二次函數(shù)的對(duì)稱軸為直線,
∴由對(duì)稱性可知,和時(shí)的函數(shù)值相等.
∴若1≤m<5,則時(shí),的最大值為2;
若m≥5,則時(shí),的最大值為.
請(qǐng)你參考小明的思路,解答下列問題:
(1)當(dāng)≤x≤4時(shí),二次函數(shù)的最大值為_______;
(2)若p≤x≤2,求二次函數(shù)的最大值;
(3)若t≤x≤t+2時(shí),二次函數(shù)的最大值為31,則的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對(duì)稱問題時(shí)發(fā)現(xiàn):
如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.
如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.
(1)請(qǐng)?jiān)趫D2中畫出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說(shuō)明P、、三點(diǎn)共線之外,還需證明;
(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com