【題目】每年的3月15日是“國際消費者權(quán)益日”,許多家居商城都會利用這個契機進行打折促銷活動.甲賣家的某款沙發(fā)每套成本為5000元,在標價8000元的基礎(chǔ)上打9折銷售.
(1)現(xiàn)在甲賣家欲繼續(xù)降價吸引買主,問最多降價多少元,才能使利潤率不低于20%?
(2)據(jù)媒體爆料,有一些賣家先提高商品價格后再降價促銷,存在欺詐行為.乙賣家也銷售相同的沙發(fā),其成本、標價與甲賣家一致,以前每周可售出8套,現(xiàn)乙賣家先將標價提高,再大幅降價元,使得這款沙發(fā)在3月15日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了,這樣一天的利潤達到了50000元,求的值.
【答案】(1)1200;(2)50
【解析】
(1)設(shè)降價x元,才能使利潤率不低于20%,根據(jù)售價-成本=利潤,即可得出關(guān)于x的一元一次不等式,解之即可得出m的取值范圍,取其最大值即可得出結(jié)論;
(2)根據(jù)總利潤=單套利潤×銷售數(shù)量,即可得出關(guān)于m的一元二次方程,解之取其正值即可得出結(jié)論.
解:(1)設(shè)降價元,才能使利潤率不低于20%,
根據(jù)題意得:,
解得:.
答:最多降價1200元,才能使利潤率不低于20%.
(2)根據(jù)題意得:
整理得:,
解得:,(不合題意,舍去).
答:的值為50.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點P(n,2),與x軸交于點A(-4,0),與y軸交于點C,PB丄x軸于點B,點A與點B關(guān)于y軸對稱.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)求證:點C為線段AP的中點;
(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形,如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)如今”微信運動“被越來越多的人關(guān)注和喜愛,某數(shù)學興趣小組隨機調(diào)查了該校50名教師某日“微信運動“中的行走步數(shù)情況,并將統(tǒng)計的數(shù)據(jù)繪制成了如下兩幅不完整的統(tǒng)計圖表.請根據(jù)以上信息,解答下列問題:
(1)求出a,b,c,d的值,并補全頻數(shù)分布直方圖.
(2)本市約有58000名教師,用調(diào)查的樣本數(shù)據(jù)估計日行步數(shù)超過12000步(包含12000步)的教師有多少名?
(3)若在被調(diào)查的50名教師中.選取日行步數(shù)超過16000步(包含16000步)的兩名教師與大家分享心得,求被選取的兩名教師的日行走步數(shù)恰好都在20000步(包含20000步)以上的概率.
步數(shù)(x) | 頻數(shù) | 頻率 |
0≤x<4000 | a | 0.16 |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | b | 0.24 |
12000≤x<16000 | 10 | c |
16000≤x<20000 | 3 | 0.06 |
2000≤x<24000 | 2 | d |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某地有甲、乙兩棟建筑物,小明于乙樓樓頂A點處看甲樓樓底D點處的俯角為45°,走到乙樓B點處看甲樓樓頂E點處的俯角為60°,已知AB=6m,DE=10m.求乙樓的高度AC的長.(參考數(shù)據(jù):,,精確到0.1m.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,碼頭在碼頭的正東方向,兩個碼頭之間的距離為10海里,今有一貨船由碼頭出發(fā),沿北偏西60°方向航行到達小島處,此時測得碼頭在南偏東45°方向,則碼頭與小島的距離為_________海里(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,AC=2BC=4,點P為AB邊中點,點E為AC邊上不與端點重合的一動點,將△ADP沿著直線PD折疊得△PDE,若DE⊥AB,則AD的長度為_____ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學疫情期間為了切實抓好“停課不停學”活動,借助某軟件平臺隨機抽取了該校部分學生的在線學習時間,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)以上信息回答下列問題
(1)本次調(diào)查的人數(shù)為 , 學習時間為7小時的所對的圓心角為 ;
(2)補全頻數(shù)分布直方圖;
(3)若全校共有學生1800人,估計有多少學生在線學習時間不低于8個小時.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,經(jīng)過點B(1,0)的拋物線與y軸交于點C,其頂點為點G,過點C作y軸的垂線交拋物線對稱軸于點D,線段CO上有一動點M,連接DM、DG.
(1)求拋物線的表達式;
(2)求的最小值以及相應(yīng)的點M的坐標;
(3)如圖2,在(2)的條件下,以點A(﹣2,0)為圓心,以AM長為半徑作圓交x軸正半軸于點E.在y軸正半軸上有一動點P,直線PF與⊙A相切于點F,連接EF交y軸于點N,當PF∥BM時,求PN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠有甲種原料69千克,乙種原料52千克,現(xiàn)計劃用這兩種原料生產(chǎn)A,B兩種型號的產(chǎn)品共80件,已知每件A型號產(chǎn)品需要甲種原料0.6千克,乙種原料0.9千克;每件B型號產(chǎn)品需要甲種原料1.1千克,乙種原料0.4千克.請解答下列問題:
(1)該工廠有哪幾種生產(chǎn)方案?
(2)在這批產(chǎn)品全部售出的條件下,若1件A型號產(chǎn)品獲利35元,1件B型號產(chǎn)品獲利25元,(1)中哪種方案獲利最大?最大利潤是多少?
(3)在(2)的條件下,工廠決定將所有利潤的25%全部用于再次購進甲、乙兩種原料,要求每種原料至少購進4千克,且購進每種原料的數(shù)量均為整數(shù).若甲種原料每千克40元,乙種原料每千克60元,請直接寫出購買甲、乙兩種原料之和最多的方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com