拋物線的頂點(diǎn)坐標(biāo)是【   】
A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)
A。
根據(jù)頂點(diǎn)式解析式寫出頂點(diǎn)坐標(biāo)即可:
拋物線的頂點(diǎn)坐標(biāo)是(3,1)。故選A。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù).

(1)當(dāng)二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn)O(0,0)時,求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖.在平面直角坐標(biāo)系中,邊長為的正方形ABCD的頂點(diǎn)A、B在x軸上,連接OD、BD、△BOD的外心I在中線BF上,BF與AD交于點(diǎn)E.

(1)求證:△OAD≌△EAB;
(2)求過點(diǎn)O、E、B的拋物線所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,其關(guān)于直線BF的對稱點(diǎn)在x軸上?若有,求出點(diǎn)P的坐標(biāo);
(4)連接OE,若點(diǎn)M是直線BF上的一動點(diǎn),且△BMD與△OED相似,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=﹣1.

(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個單位長度的速度在線段OA上運(yùn)動,同時動點(diǎn)M從M從O點(diǎn)出發(fā)以每秒3個單位長度的速度在線段OB上運(yùn)動,過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川資陽12分)如圖,四邊形ABCD是平行四邊形,過點(diǎn)A、C、D作拋物線y=ax2+bx+c(a≠0),與x軸的另一交點(diǎn)為E,連結(jié)CE,點(diǎn)A、B、D的坐標(biāo)分別為(﹣2,0)、(3,0)、(0,4).

(1)求拋物線的解析式;
(2)已知拋物線的對稱軸l交x軸于點(diǎn)F,交線段CD于點(diǎn)K,點(diǎn)M、N分別是直線l和x軸上的動點(diǎn),連結(jié)MN,當(dāng)線段MN恰好被BC垂直平分時,求點(diǎn)N的坐標(biāo);
(3)在滿足(2)的條件下,過點(diǎn)M作一條直線,使之將四邊形AECD的面積分為3:4的兩部分,求出該直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣2 與x軸交于點(diǎn)A(﹣1,0)、B(4,0).點(diǎn)M、N在x軸上,點(diǎn)N在點(diǎn)M右側(cè),MN=2.以MN為直角邊向上作等腰直角三角形CMN,∠CMN=90°.設(shè)點(diǎn)M的橫坐標(biāo)為m.

(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式.
(2)求點(diǎn)C在這條拋物線上時m的值.
(3)將線段CN繞點(diǎn)N逆時針旋轉(zhuǎn)90°后,得到對應(yīng)線段DN.
①當(dāng)點(diǎn)D在這條拋物線的對稱軸上時,求點(diǎn)D的坐標(biāo).
②以DN為直角邊作等腰直角三角形DNE,當(dāng)點(diǎn)E在這條拋物線的對稱軸上時,直接寫出所有符合條件的m值.
(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù),當(dāng)自變量x取m對應(yīng)的函數(shù)值大于0,設(shè)自變量分別取m-3,m+3 時對應(yīng)的函數(shù)值為y1,y2,則
A.y1>0,y2>0B.y1>0,y2<0 C.y1<0,y2>0D.y1<0,y2<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)的圖象如圖所示,有下列5個結(jié)論:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的實數(shù))。
其中正確結(jié)論的序號有     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的最小值是     

查看答案和解析>>

同步練習(xí)冊答案