作業(yè)寶如圖,在Rt△ABC中,AB=AC,∠BAC=90°,∠ABE-=∠EBC,CE⊥BD的延長線于E,求證:BD=2CE.

證明:延長BA交CE的延長線于F.
∵BE⊥CE,
∴∠BEF=∠BEC=90°,
在△BEF和△BEC中

∴△BEF≌△BEC(ASA),
∴CE=FE=CF(全等三角形對應邊相等),
∵∠BAC=90°,BE⊥CF,
∴∠BAD=∠CAF=90°,
∴∠BDA+∠ABD=∠EDC+∠ECA=90°
即∠ABD=∠ECA
在△ABD和△ACF中

∴△ABD△ACF(ASA),
∴BD=CF,
∵CE=EF=CF,
∴BD=2CE.
分析:根據(jù)ASA推出△BEF△BEC,推出CE=FE=CF,求出∠ABD=∠ACF,∠BAD=∠CAF,根據(jù)ASA推出△ABD≌△ACF,推出BD=CF即可.
點評:本題考查了全等三角形性質(zhì)和判定的應用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應邊相等,對應角相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案