【題目】(1)問題發(fā)現(xiàn)與探究:
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A、D、E在同一直線上,CM⊥AE于點M,連接BD,則①線段AE、BD之間的大小關系是 ,∠ADB= °;②求證:AD=2CM+BD.
(2)問題拓展與應用:
如圖2、圖3,等腰Rt△ABC中,∠ACB=90°,過點A作直線,在直線上取點D,∠ADC=45°,連結BD,BD=1,AC=,則點C到直線AD的距離是 .(直接寫出答案)
【答案】(1)① AE=BD,90;②見解析;(2)或
【解析】
(1)根據(jù)等腰直角三角形的性質得到AC=BC,CE=CD,由∠ACB=∠DCE=90°,得到∠ACE=∠BCD,證得△ACD≌△BCE,根據(jù)全等三角形的性質得到AE=BD,∠AEC=∠BDC,根據(jù)鄰補角的定義得到∠AEC=135°即可得到結論;②根據(jù)等腰直角三角形的性質即可得到結論.
(2)如圖2,過C作CH⊥AD于H,CE⊥CD交AD于E,于是得到△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,根據(jù)勾股定理得到AB==2,
,由等腰直角三角形的性質即可得到結論.如圖3,過C作CH⊥AD于H,CE⊥CD交DA的延長線于E,于是得到△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,根據(jù)勾股定理得到AB==2,,于是可得DE的長度,利用等腰直角三角形DEC的性質得出結論.
解:(1)①∵△ACB和△DCE均為等腰直角三角形,
∴AC=BC,CE=CD,
∵∠ACB=∠DCE=90°,
∴∠ACE=∠BCD,
在△ACE與△BCD中,
,
∴△ACE≌△BCD,
∴AE=BD,∠AEC=∠BDC,
∵∠CED=∠CDE=45°,
∴∠AEC=135°,∴∠BDC=135°,
∴∠ADB=90°;
故答案為:AE=BD,90°;
②在等腰直角三角形DCE中,CM為斜邊DE上的高,
∴CM=DM=ME,∴DE=2CM.
∴
(2) 如圖2,過C作CH⊥AD于H,CE⊥CD交AD于E,又∠ADC=45°
則△CDE是等腰直角三角形,
由(1)知,AE=BD=1,∠ADB=90°,
∵AB==2,
∴AD= ,
∴DE=AD-AE=,
∵△CDE是等腰直角三角形,
∴CH=DE=,
如圖3所示,過C作CH⊥AD于H,CE⊥CD交DA的延長線于E,又∠ADC=45°
則△CDE是等腰直角三角形,由(1)知,AE=BD=1,∠ADB=90°,
∵AB==2, ∴AD= ,
∴DE=AE+AD=1+,
∵△CDE是等腰直角三角形,
∴CH=DE=,
∴點C到直線的距離是 或,
故答案為: 或 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個由傳感器A控制的燈,要裝在門上方離地面4.5m的墻上,任何東西只要移至該燈5m及5m內,燈就會自動發(fā)光,小明身高1.5m,他走到離墻_______的地方燈剛好發(fā)光.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D,且∠A=∠D.
(1)求∠ACD的度數(shù);
(2)若CD=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象經(jīng)過A、B兩點,與x軸交于點C,則此一次函數(shù)的解析式為__________,△AOC的面積為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】利用我們學過的知識,可以導出下面這個等式:
.
該等式從左到右的變形,不僅保持了結構的對稱性,還體現(xiàn)了數(shù)學的和諧、簡潔美.
(1)請你展開右邊檢驗這個等式的正確性;
(2)利用上面的式子計算:
.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.
(1)求該型號自行車的進價和標價分別是多少元?
(2)若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD,DEFG都是正方形,邊長分別為m,n(m<n).坐標原點O為AD的中點,A,D,E在y軸上,若二次函數(shù)y=ax2的圖象過C,F兩點,則=( 。
A.+1B.+1C.2﹣1D.2﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,∠ACB=90°,CD是∠ACB的平分線,點P在CD上,CP=.將三角板的直角頂點放置在點P處,繞著點P旋轉,三角板的一條直角邊與射線CB交于點E,另一條直角邊與直線CA、直線CB分別交于點F、點G.
(1)如圖,當點F在射線CA上時,
①求證:PF=PE.
②設CF=x,EG=y(tǒng),求y與x的函數(shù)解析式并寫出函數(shù)的定義域.
(2)連接EF,當△CEF與△EGP相似時,求EG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com