如圖,△ABC是邊長(zhǎng)為6厘米的等邊三角形,則圓A向右平移________厘米與圓B重合,圓B繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)________度與圓C重合.

6    300
分析:根據(jù)平移的性質(zhì)和等邊三角形的性質(zhì)可得圓A向右平移與圓B重合的距離,根據(jù)等邊三角形的內(nèi)角都是60°進(jìn)行求解圓B繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)與圓C重合的度數(shù).
解答:解:∵△ABC是邊長(zhǎng)為6厘米的等邊三角形,
∴AB=6厘米,∠BAC=60°,
∴360°-60°=300°,
∴圓A向右平移6厘米與圓B重合,圓B繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)300度與圓C重合.
故答案為:6,300.
點(diǎn)評(píng):考查了平移的性質(zhì)和等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)中心的確定,旋轉(zhuǎn)角的確定,圓的旋轉(zhuǎn),都是基礎(chǔ)知識(shí),需要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是邊長(zhǎng)為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉(zhuǎn)120°.
①直接寫(xiě)出△ABC的內(nèi)切圓半徑r和外接圓半徑R分別是多少?
②設(shè)點(diǎn)D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫(huà)出△DEF,說(shuō)明它的形狀,并計(jì)算它的周長(zhǎng);
③根據(jù)“線(xiàn)動(dòng)成面”的道理,△ABC的三條邊AB、BC和CA在旋轉(zhuǎn)過(guò)程中掃過(guò)的部分組成的平面圖形的形狀是什么?并計(jì)算出此圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遵義)如圖,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線(xiàn)上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線(xiàn)方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);
(2)當(dāng)運(yùn)動(dòng)過(guò)程中線(xiàn)段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線(xiàn)段ED的長(zhǎng);如果變化請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•溧水縣一模)如圖,△ABC是邊長(zhǎng)為4的等邊三角形,將△ABC沿直線(xiàn)BC向右平移,使B點(diǎn)與C點(diǎn)重合,得到△DCE,連結(jié)BD,交AC于F.
(1)猜想BD與DE的位置關(guān)系,并證明你的結(jié)論;
(2)求△BDE的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•湘潭)如圖,△ABC是邊長(zhǎng)為3的等邊三角形,將△ABC沿直線(xiàn)BC向右平移,使B點(diǎn)與C點(diǎn)重合,得到△DCE,連接BD,交AC于F.
(1)猜想AC與BD的位置關(guān)系,并證明你的結(jié)論;
(2)求線(xiàn)段BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是邊長(zhǎng)為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°,以D為頂點(diǎn)做一個(gè)60°角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN,則△AMN的周長(zhǎng)為
6
6

查看答案和解析>>

同步練習(xí)冊(cè)答案