【題目】濟(jì)寧某校為了解九年級學(xué)生藝術(shù)測試情況.以九年極(1)班學(xué)生的藝術(shù)測試成績?yōu)闃颖,?/span>、、四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

(說明:級:90~100分;級:75~89分;60~74分;級:60分以下)

1)此次抽樣共調(diào)查了多少名學(xué)生?

2)請求出樣本中級的學(xué)生人數(shù),井補全條形統(tǒng)計圖;

3)若該校九年級有1000名學(xué)生,請你用此樣本估計藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù),

【答案】1)此次抽樣共調(diào)查了50名學(xué)生;(2)樣本中等級的人數(shù)是5名,補全條形統(tǒng)計圖見解析;(3)估計藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù)約為660人.

【解析】

1)根據(jù)A級的學(xué)生數(shù)和所占的百分比可以求得本次抽樣調(diào)查的學(xué)生數(shù);
2)根據(jù)(1)中的結(jié)果和條形統(tǒng)計圖中的數(shù)據(jù)可以求得D級的學(xué)生數(shù),從而可以將條形統(tǒng)計圖補充完整;
3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以得到該校九年級藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù).

1(名),

即此次抽樣共調(diào)查了50名學(xué)生;

2)樣本中等級的人數(shù)是:(名)

補全的條形統(tǒng)計圖如下圖所示;

3)根據(jù)題意得:(人),

答:估計藝術(shù)測試中分?jǐn)?shù)不低于75分的學(xué)生人數(shù)約為660人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB4,BC6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點Ax軸的正半軸上左右移動時,矩形的另一個頂點D始終在y軸的正半軸上隨之上下移動.

(1)當(dāng)∠OAD30°時,求點C的坐標(biāo);

(2)設(shè)AD的中點為M,連接OMMC,當(dāng)四邊形OMCD的面積為時,求OA的長;

(3)當(dāng)點A移動到某一位置時,點C到點O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(0,4)B(3,4)P 為線段 OA 上一動點,過 O,P,B 三點的圓交 x 軸正半軸于點 C,連結(jié) AB, PC,BC,設(shè) OP=m.

(1)求證:當(dāng) P A 重合時,四邊形 POCB 是矩形.

(2)連結(jié) PB,求 tanBPC 的值.

(3)記該圓的圓心為 M,連結(jié) OM,BM,當(dāng)四邊形 POMB 中有一組對邊平行時,求所有滿足條件的 m 的值.

(4)作點 O 關(guān)于 PC 的對稱點O ,在點 P 的整個運動過程中,當(dāng)點O 落在APB 的內(nèi)部 (含邊界)時,請寫出 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線的頂點為C1,4),交x軸于A、B兩點,交y軸于點D,其中點B的坐標(biāo)為(3,0).

1)求拋物線的解析式;

2)如圖2,點EBD上方拋物線上的一點,連接AEDB于點F,若AF=2EF,求出點E的坐標(biāo).

3)如圖3,點M的坐標(biāo)為(0),點P是對稱軸左側(cè)拋物線上的一點,連接MP,將MP沿MD折疊,若點P恰好落在拋物線的對稱軸CE上,請求出點P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1=kx+b與反比例函數(shù)y2=n0)交于點A1,3),B3,m).

1)分別求兩個函數(shù)的解析式;

2)根據(jù)圖像直接寫出,當(dāng)x為何值時,y1y2

3)在x軸上找一點P,使得OAP的面積為6,求出P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有一張矩形紙片ABCD,AB4BC8,點M,N分別在矩形的邊ADBC上,將矩形紙片沿直線MN折疊,使點C落在矩形的邊AD上,記為點P,點D落在G處,連接PC,交MN丁點Q,連接CM

1)求證:PMPN;

2)當(dāng)PA重合時,求MN的值;

3)若PQM的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校一面墻前有一塊空地,校方準(zhǔn)備用長的柵欄()圍成一個一面靠墻的長方形花圍,再將長方形分割成六塊(如圖所示) ,已知,,設(shè)

1)用含的代數(shù)式表示: ;

2)當(dāng)長方形的面積等于時,求的長.

3)若在如圖的甲區(qū)域種植花卉.乙區(qū)域種柏草坪,種柏花卉的成本為每平方米100元,種被草坪的成本為每平方米50元,若種植花卉與草坪的總費用超過6300元,求花圍的寬的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠色出行是對環(huán)境影響最小的出行方式,“共享單車”已成為北京的一道靚麗的風(fēng)景線.某社會實踐活動小

組為了了解“共享單車”的使用情況,對本校教師在36日至310日使用單車的情況進(jìn)行了問卷調(diào)查,

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖的一部分:

請根據(jù)以上信息解答下列問題:

137日使用“共享單車”的教師人數(shù)為人,并請補全條形統(tǒng)計圖;

2)不同品牌的“共享單車”各具特色,社會實踐活動小組針對有過使用“共享單車”經(jīng)歷的教師做了進(jìn)一步調(diào)查,每位教師都按要求選擇了一種自己喜歡的“共享單車”,統(tǒng)計結(jié)果如圖,其中喜歡的教師有36人,求喜歡的教師的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點,

1)求證:BC=DE;

2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

同步練習(xí)冊答案