如圖所示,分別以四邊形ABCD的四個頂點為圓心,半徑為R作四個互為不相交的圓,則圖中陰影部分面積之和是________.

πR2
分析:先根據(jù)n邊形的內(nèi)角和定理計算出四邊形ABCD的內(nèi)角和,而四個扇形的圓心角的和等于四邊形ABCD的內(nèi)角和,然后利用扇形的面積公式計算即可.
解答:∵四個扇形的圓心角的和等于四邊形ABCD的內(nèi)角和,即為(4-2)•180°=360°,
∴陰影部分面積之和==πR2
故答案為πR2
點評:本題考查了n邊形的內(nèi)角和定理:n邊形的內(nèi)角和為(n-2)•180°;也考查了扇形的面積公式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、我們給出如下定義:如圖2所示,若一個四邊形的兩組相鄰兩邊分別相等,則稱這個四邊形為箏形四邊形,把這兩條相等的鄰邊稱為這個四邊形的箏邊.
(1)寫出一個你所學過的特殊四邊形中是箏形四邊形的圖形的名稱
矩形
;
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(0,3),B(3,0),請你畫出以格點為頂點,OA,OB為邊的箏形四邊OAMB;
(3)如圖2,在箏形ABCD,AD=CD,AB=BC,若∠ADC=60°,∠ABC=30°,求證:2AB2=BD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

我們給出如下定義:如圖2所示,若一個四邊形的兩組相鄰兩邊分別相等,則稱這個四邊形為箏形四邊形,把這兩條相等的鄰邊稱為這個四邊形的箏邊.
(1)寫出一個你所學過的特殊四邊形中是箏形四邊形的圖形的名稱________;
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(0,3),B(3,0),請你畫出以格點為頂點,OA,OB為邊的箏形四邊OAMB;
(3)如圖2,在箏形ABCD,AD=CD,AB=BC,若∠ADC=60°,∠ABC=30°,求證:2AB2=BD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

由于矩形和菱形特殊的對稱美和矩形的四個角都是直角,從而為密鋪提供了方便,因此墻磚一般設(shè)計為矩形,而且圖案以菱形居多,如圖3所示,是長為30cm,寬為20cm的一塊矩形瓷磚,E、F、G、H分別是矩形四邊的中點,陰影部分為黃色,其它部分為淡藍色,現(xiàn)有一面長為6m,高為3m的墻面準備貼這種瓷磚,那么:這面墻要貼的瓷磚數(shù)及全部貼滿后這面墻上最多出現(xiàn)的與圖3中面積相等的菱形個數(shù)分別為


  1. A.
    288、561
  2. B.
    300、561
  3. C.
    288、566
  4. D.
    300、566

查看答案和解析>>

科目:初中數(shù)學 來源:延慶縣一模 題型:解答題

我們給出如下定義:如圖2所示,若一個四邊形的兩組相鄰兩邊分別相等,則稱這個四邊形為箏形四邊形,把這兩條相等的鄰邊稱為這個四邊形的箏邊.
(1)寫出一個你所學過的特殊四邊形中是箏形四邊形的圖形的名稱______;
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(0,3),B(3,0),請你畫出以格點為頂點,OA,OB為邊的箏形四邊OAMB;
(3)如圖2,在箏形ABCD,AD=CD,AB=BC,若∠ADC=60°,∠ABC=30°,求證:2AB2=BD2
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2008年北京市延慶縣中考數(shù)學一模試卷(解析版) 題型:解答題

我們給出如下定義:如圖2所示,若一個四邊形的兩組相鄰兩邊分別相等,則稱這個四邊形為箏形四邊形,把這兩條相等的鄰邊稱為這個四邊形的箏邊.
(1)寫出一個你所學過的特殊四邊形中是箏形四邊形的圖形的名稱______;
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(0,3),B(3,0),請你畫出以格點為頂點,OA,OB為邊的箏形四邊OAMB;
(3)如圖2,在箏形ABCD,AD=CD,AB=BC,若∠ADC=60°,∠ABC=30°,求證:2AB2=BD2

查看答案和解析>>

同步練習冊答案