閱讀:
已知:方程組
2a-3b=7
3a+5b=1
的解是
a=2
b=-1
,求方程組
2(x+3)-3(y-2)=7
3(x+3)+5(y-2)=1
的解.
我們發(fā)現(xiàn):這兩個方程組它們的系數(shù)有一定的規(guī)律,若把x+3看作a,把y-2看作b,則這兩個方程組完全一樣,所以
Χ+3=2
y-2=-1
,解得
x=-1
y=1

應(yīng)用:
類比上面方程組的解法,求方程組
2(x+y)-3(x-y)=7
3(x+y)+5(x-y)=1
的解.
拓展:
方程組
a1x+b1y=c1
a2x+b2y=c2
的解是
x=3
y=4
,求方程組
3a1x+2b1y=5c1
3a2x+2b2y=5c2
的解.
分析:根據(jù)題意方程組
2(x+y)-3(x-y)=7
3(x+y)+5(x-y)=1
可看做是關(guān)于x+y與x-y的方程組,則
x+y=2
x-y=-1
,然后利用加減消元法解即可;
先變形方程組
3a1x+2b1y=5c1
3a2x+2b2y=5c2
3
5
a1+
2
5
b1=c1
3
5
a2+
2
5
b2=c2
這樣可看做是
3
5
x與
2
5
y的方程組,則
3
5
x=3
2
5
y=4
,易得到原方程組的解.
解答:解:∵方程組
2(x+y)-3(x-y)=7
3(x+y)+5(x-y)=1
可看做是關(guān)于x+y與x-y的方程組,
x+y=2
x-y=-1
,
x=
1
2
y=
3
2
;
∵變形方程組
3a1x+2b1y=5c1
3a2x+2b2y=5c2
3
5
a1+
2
5
b1=c1
3
5
a2+
2
5
b2=c2
這樣可看做是
3
5
x與
2
5
y的方程組,
3
5
x=3
2
5
y=4
,
x=5
y=10
點評:本題考查了解二元一次方程組:利用代入消元法或加減消元法把二元一次方程組轉(zhuǎn)化為一元一次方程,從而使解出方程組.也考查了類比的思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀探索:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”(完成下列空格)
(1)當(dāng)已知矩形A的邊長分別為6和1時,小亮同學(xué)是這樣研究的:
設(shè)所求矩形的兩邊分別是x和y,由題意得方程組:
x+y=
7
2
xy=3
,消去y化簡得:2x2-7x+6=0,
∵△=49-48>0,∴x1=
 
,x2=
 
,
∴滿足要求的矩形B存在.
(2)如果已知矩形A的邊長分別為2和1,請你仿照小亮的方法研究是否存在滿足要求的矩形B.
(3)如果矩形A的邊長為m和n,請你研究滿足什么條件時,矩形B存在?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解題:
閱讀例子:已知:關(guān)于x、y的方程組
a1x+b1y=c1
a2x+b2y=c2
的解是
x=2
y=3
,求關(guān)于x、y的方程組
2a1x+b1y=3c1
2a2x+b2y=3c2
的解.
解:方程組
2a1x+b1y=3c1
2a2x+b2y=3c2
可化為
2
3
a1x+
1
3
b1y=c1
2
3
a2x+
1
3
b2y=c2

∵方程組
a1x+b1y=c1
a2x+b2y=c2
的解是
x=2
y=3
,
2
3
x=2
1
3
y=3

x=3
y=9

∴方程組
2a1x+b1y=3c1
2a2x+b2y=3c2
的解是
x=3
y=9

通過對上面材料的認(rèn)真閱讀后,解方程組:
已知:關(guān)于x、y的方程組
a1x+b1y=c1
a2x+b2y=c2
的解是
x=-1
y=2
,求關(guān)于x、y的方程組
a1x+2b1y=3c1
a2x+2b2y=3c2
的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀:
已知:方程組數(shù)學(xué)公式的解是數(shù)學(xué)公式,求方程組數(shù)學(xué)公式的解.
我們發(fā)現(xiàn):這兩個方程組它們的系數(shù)有一定的規(guī)律,若把x+3看作a,把y-2看作b,則這兩個方程組完全一樣,所以數(shù)學(xué)公式,解得數(shù)學(xué)公式
應(yīng)用:
類比上面方程組的解法,求方程組數(shù)學(xué)公式的解.
拓展:
方程組數(shù)學(xué)公式的解是數(shù)學(xué)公式,求方程組數(shù)學(xué)公式的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省咸寧市中考數(shù)學(xué)模擬試卷(十三)(解析版) 題型:解答題

閱讀:
已知:方程組的解是,求方程組的解.
我們發(fā)現(xiàn):這兩個方程組它們的系數(shù)有一定的規(guī)律,若把x+3看作a,把y-2看作b,則這兩個方程組完全一樣,所以,解得
應(yīng)用:
類比上面方程組的解法,求方程組的解.
拓展:
方程組的解是,求方程組的解.

查看答案和解析>>

同步練習(xí)冊答案