(1)證明:連接OF
∵FH是⊙O的切線
∴OF⊥FH
∵FH∥BC,
∴OF垂直平分BC
∴
,
∴∠1=∠2,
∴AF平分∠BAC
(2)證明:由(1)及題設條件可知
∠1=∠2,∠4=∠3,∠5=∠2
∴∠1+∠4=∠2+∠3
∴∠1+∠4=∠5+∠3
∵∠1+∠4=∠BDF,∠5+∠3=∠FBD,
∴∠BDF=∠FBD,
∴BF=FD
(3)解:在△BFE和△AFB中
∵∠5=∠2=∠1,∠AFB=∠AFB,
∴△BFE∽△AFB
∴
═
,
∴BF
2=FE•FA
∴
,EF=4,BF=FD=EF+DE=4+3=7,
∴
∴AD=AF-DF=AF-(DE+EF)=
=
分析:(1)連接OF,通過切線的性質證OF⊥FH,進而由FH∥BC,得OF⊥BC,即可由垂徑定理得到F是弧BC的中點,根據(jù)圓周角定理可得∠BAF=∠CAF,由此得證;
(2)求BF=FD,可證兩邊的對角相等;易知∠DBF=∠DBC+∠FBC,∠BDF=∠BAD+∠ABD;觀察上述兩個式子,∠ABD、∠CBD是被角平分線平分∠ABC所得的兩個等角,而∠CBF和∠DAB所對的是等弧,由此可證得∠DBF=∠BDF,即可得證;
(3)由EF、DE的長可得出DF的長,進而可由(2)的結論得到BF的長;然后證△FBE∽△FAB,根據(jù)相似三角形得到的成比例線段,可求出AF的長,即可由AD=AF-DF求出AD的長.
點評:此題主要考查了切線的性質、圓周角定理及相似三角形的判定和性質.