【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)中較長線段與較短線段長度的差等于PQ的長.
【答案】(1)證明見解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
【解析】試題分析:(1)利用AAS證明△AQB≌△DPA,可得AP=BQ;(2)根據(jù)AQ﹣AP=PQ和全等三角形的對(duì)應(yīng)邊相等可寫出4對(duì)線段.
試題解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),
∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中,不能判定四邊形為平行四邊形的是( )
A. 對(duì)角線互相平分 B. 一組對(duì)邊平行且相等
C. 兩組對(duì)邊分別平行 D. 一組對(duì)邊平行,另一組對(duì)邊相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E , BE交CD于點(diǎn)F , ∠1+∠2=90°.
(1)試說明:AB∥CD;
(2)若∠2=25°,求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由實(shí)驗(yàn)測(cè)得某一彈簧的長度y(cm)與懸掛物體的質(zhì)量x(kg)之間有如下關(guān)系:y= —12+0.5x.下列說法正確的是( )
A. 變量是x,常量是12,0.5 B. 變量是x,常量是-12,0.5
C. 變量是x,y,常量是12,0.5 D. 變量是x,y,常量是-12,0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,OA=2,AB=6點(diǎn)C在x軸的負(fù)半軸上,將平行四邊形ABCO繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到平行四邊形ADEF,點(diǎn)D在直線AO上,點(diǎn)F在x軸的正半軸上,則直線DE的表達(dá)式__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知射線AB與直線CD交于點(diǎn)O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數(shù);
(2)試說明OD平分∠AOG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(2,3)在函數(shù)y=ax2-x+1的圖象上,則a=( )
A. 1 B. -1 C. 2 D. -2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把拋物線y=6(x+1)2平移后得到拋物線y=6x2,平移的方法可以是( 。
A. 沿y軸向上平移1個(gè)單位B. 沿y軸向下平移1個(gè)單位
C. 沿x軸向左平移1個(gè)單位D. 沿x軸向右平移1個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某禮堂第一排有m個(gè)座位,后面每排比前一排多一個(gè)座位,則第20排有( )個(gè)座位.
A.m+21
B.m+20
C.m+19
D.m+18
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com