點P是x軸正半軸上的一個動點,過點P作x軸的垂線PA交雙曲線于點A,連接OA并延長,與雙曲線交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接AH、PF.

(1)如圖①,當點A的橫坐標為時,求四邊形APFH的面積.
(2)如圖②,當點P在x軸的正方向上運動到點D,過點D作x軸的垂線交雙曲線于點B,連接BO并延長,與雙曲線交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接BH、DF,求四邊形BDFH的面積.
(3)若雙曲線的解析式為,四邊形BDFH的面積為______.(直接寫出答案)
【答案】分析:(1)如圖①,根據(jù)反比例函數(shù)圖象的性質知道A、F關于原點對稱,而FH垂直于x軸,AP⊥x軸,由此得到H、P關于原點對稱,這樣就可以得到四邊形APFH的面積是△APO的四倍,而△APO的面積為反比例函數(shù)比例系數(shù)的絕對值的一半,由此即可解決問題;
(2)思路和(1)完全一樣;
(3)思路和(1)完全一樣.
解答:解:(1)如圖①,根據(jù)反比例函數(shù)圖象的性質知道A、F關于原點對稱,
而FH垂直于x軸,AP⊥x軸,
∴H、P關于原點對稱,
∴四邊形APFH的面積是△APO的四倍,
設A的坐標為(x,y)(x>0,y>0),
則xy=1,
而△APO的面積=xy=,
∴四邊形APFH的面積是4×=2;

(2)如圖②,當點P在x軸的正方向上運動到點D,過點D作x軸的垂線交雙曲線于點B,連接BO并延長,與雙曲線交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接BH、DF,
那么同樣得B、F關于原點對稱,D、H 關于原點對稱,
∴四邊形BDFH的面積是△OBD的面積的4倍,
而△OBD的面積同樣為,
∴四邊形BDFH的面積是2;

(3)若雙曲線的解析式為,四邊形BDFH的面積為2|k|.
故答案為:2|k|.
點評:此題主要考查了反比例函數(shù)圖象和性質,解題的關鍵 是利用函數(shù)圖象的性質求出三角形的面積,然后利用三角形和四邊形的關系求出四邊形的面積解決問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知點P是x軸正半軸的一個動點,過點P作x軸的垂線PA交雙曲線y=
1x
于點A,連接OA.
精英家教網(wǎng)
(1)如圖甲,當點P在x軸的正方向上運動時,Rt△AOP的面積大小是否變化答:
 
(請?zhí)睢白兓被颉安蛔兓保?BR>若不變,請求出Rt△AOP的面積=
 
;若改變,試說明理由(自行思索,不必作答);
(2)如圖乙,在x軸上的點P的右側有一點D,過點D作x軸的垂線交雙曲線于點B,連接BO交AP于C,設△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關系是S1
 
S2(請?zhí)睢埃尽、“<”或?”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

點P是x軸正半軸上的一個動點,過點P作x軸的垂線PA交雙曲線數(shù)學公式于點A,連接OA并延長,與雙曲線數(shù)學公式交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接AH、PF.
作業(yè)寶
(1)如圖①,當點A的橫坐標為數(shù)學公式時,求四邊形APFH的面積.
(2)如圖②,當點P在x軸的正方向上運動到點D,過點D作x軸的垂線交雙曲線于點B,連接BO并延長,與雙曲線數(shù)學公式交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接BH、DF,求四邊形BDFH的面積.
(3)若雙曲線的解析式為數(shù)學公式,四邊形BDFH的面積為______.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(浙江麗水卷)數(shù)學(解析版) 題型:解答題

如圖1,點A是x軸正半軸上的動點,點B的坐標為(0,4),M是線段AB的中點。將點M繞點A順時針方向旋轉900得到點C,過點C作x軸的垂線,垂足為F,過點B作y軸的垂線與直線CF相交于點E,點D是點A關于直線CF的對稱點。連結AC,BC,CD,設點A的橫坐標為t,

(1)當t=2時,求CF的長;

(2)①當t為何值時,點C落在線段CD上;

②設△BCE的面積為S,求S與t之間的函數(shù)關系式;

(3)如圖2,當點C與點E重合時,將△CDF沿x軸左右平移得到,再將A,B,為頂點的四邊形沿剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形。請直接寫出符合上述條件的點坐標,

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年廣西南寧初中學校城鄉(xiāng)共同體中考模擬數(shù)學試卷(解析版) 題型:選擇題

如圖,點Ay軸正半軸上的一個定點,點B是反比例函數(shù)y (x>0)圖象上的一個動點,當點B的縱坐標逐漸減小時,△OAB的面積將(    )

(A) 逐漸增大      (B) 逐漸減小    (C) 不變       (D) 先增大后減小

 

查看答案和解析>>

同步練習冊答案