如圖1,矩形MNPQ中,點E,F,G,H分別在NP,PQ,QMMN上,若,則稱四邊形EFGH為矩形MNPQ的反射四邊形.圖2,圖3,圖4中,四邊形ABCD為矩形,且,

理解與作圖:

(1)在圖2,圖3中,點E,F分別在BC,CD邊上,試利用正方形網(wǎng)格在圖上作出矩形ABCD的反射四邊形EFGH

計算與猜想:

(2)求圖2,圖3中反射四邊形EFGH的周長,并猜想矩形ABCD的反射四邊形的周長是否為定值?

啟發(fā)與證明:

(3)如圖4,為了證明上述猜想,小華同學嘗試延長GFBC的延長線于M,試利用小華同學給我們的啟發(fā)證明(2)中的猜想.

 

【答案】

(1)

(2)(3)見解析

【解析】(1)作圖如下:························· 2分

 

 

(2)解:在圖2中,,

∴四邊形EFGH的周長為.······················ 3分

在圖3中,,

∴四邊形EFGH的周長為.·············· 4分

猜想:矩形ABCD的反射四邊形的周長為定值.··············· 5分

(3)證法一:延長GHCB的延長線于點N

 

,

,

∴Rt△FCE≌Rt△FCM

,.························ 6分

同理:

.··························· 7分

,

.    ∴.···················· 8分

過點GGKBCK,則.················ 9分

∴四邊形EFGH的周長為.·················· 10分

證法二:∵,    ∴

,    ∴Rt△FCE≌Rt△FCM

.························ 6分

,,

,   ∴

HEGF.    同理:GHEF

∴四邊形EFGH是平行四邊形.······················ 7分

.     而

∴Rt△FDG≌Rt△HBE.     ∴.················· 8分

過點GGKBCK,則.····· 9分

∴四邊形EFGH的周長為.  10分

(1)根據(jù)網(wǎng)格結(jié)構(gòu),作出相等的角即可得到反射四邊形;

(2)圖2中,利用勾股定理求出EF=FG=GH=HE的長度,然后即可得到周長,圖3中利用勾股定理求出EF=GH,F(xiàn)G=HE的長度,然后求出周長,從而得到四邊形EFGH的周長是定值;

(3)證法一:延長GH交CB的延長線于點N,再利用“角邊角”證明Rt△FCE和Rt△FCM全等,根據(jù)全等三角形對應邊相等可得EF=MF,EC=MC,同理求出NH=EH,NB=EB,從而得到MN=2BC,再證明GM=GN,過點G作GK⊥BC于K,根據(jù)等腰三角形三線合一的性質(zhì)求出MK=MN=8,再利用勾股定理求出GM的長度,然后即可求出四邊形EFGH的周長;

證法二:利用“角邊角”證明Rt△FCE和Rt△FCM全等,根據(jù)全等三角形對應邊相等可得EF=MF,EC=MC,再根據(jù)角的關(guān)系推出∠M=∠HEB,根據(jù)同位角相等,兩直線平行可得HE∥GF,同理可證GH∥EF,所以四邊形EFGH是平行四邊形,過點G作GK⊥BC于K,根據(jù)邊的關(guān)系推出MK=BC,再利用勾股定理列式求出GM的長度,然后即可求出四邊形EFGH的周長.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)二模)如圖1,矩形MNPQ中,點E、F、G、H分別在NP、PQ、QM、MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.在圖2、圖3中,四邊形ABCD為矩形,且AB=4,BC=8.

(1)在圖2、圖3中,點E、F分別在BC、CD邊上,圖2中的四邊形EFGH是利用正方形網(wǎng)格在圖上畫出的矩形ABCD的反射四邊形.請你利用正方形網(wǎng)格在圖3上畫出矩形ABCD的反射四邊形EFGH;
(2)圖2、圖3中矩形ABCD的反射四邊形EFGH的周長是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的周長各是多少;
(3)圖2、圖3中矩形ABCD的反射四邊形EFGH的面積是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的面積各是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•咸寧)如圖1,矩形MNPQ中,點E,F(xiàn),G,H分別在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.圖2,圖3,圖4中,四邊形ABCD為矩形,且AB=4,BC=8.
理解與作圖:
(1)在圖2,圖3中,點E,F(xiàn)分別在BC,CD邊上,試利用正方形網(wǎng)格在圖上作出矩形ABCD的反射四邊形EFGH.
計算與猜想:
(2)求圖2,圖3中反射四邊形EFGH的周長,并猜想矩形ABCD的反射四邊形的周長是否為定值?
啟發(fā)與證明:
(3)如圖4,為了證明上述猜想,小華同學嘗試延長GF交BC的延長線于M,試利用小華同學給我們的啟發(fā)證明(2)中的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形MNPQ中,MN=6,PN=4,動點R從點N出發(fā),沿N→P→Q→M方向運動至點M處停止.設(shè)點R運動的路程為x,△MNR的面積為y,
(1)當x=3時,y=
9
9
;當x=12時,y=
6
6
;當y=6時,x=
2或12
2或12
;
(2)分別求當0<x<4、4≤x≤10、10<x<14時,y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆浙江省杭州市高橋初中教育集團九年級第二學期期初質(zhì)量檢測數(shù)學卷(帶解析) 題型:解答題

如圖1,矩形MNPQ中,點E,F(xiàn),G,H分別在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,則稱四邊形EFGH為矩形MNPQ的反射四邊形.圖2,圖3,圖4中,四邊形ABCD為矩形,且AB=4,BC=8.


(1)理解與作圖:在圖2,圖3中,點E,F(xiàn)分別在BC,CD邊上,試利用正方形網(wǎng)格在圖上作出矩形ABCD的反射四邊形EFGH.
(2)計算與猜想:求圖2,圖3中反射四邊形EFGH的周長,并猜想矩形ABCD的反射四邊形的周長是否為定值?
(3)啟發(fā)與證明:如圖4,為了證明上述猜想,小華同學嘗試延長GF交BC的延長線于M,試利用小華同學給我們的啟發(fā)證明(2)中的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年北京市門頭溝區(qū)中考二模數(shù)學試卷(帶解析) 題型:解答題

如圖1,矩形MNPQ中,點E、F、G、H分別在NP、PQ、QM、MN上,若,則稱四邊形EFGH為矩形MNPQ的反射四邊形.在圖2、圖3中,四邊形ABCD為矩形,且,
(1)在圖2、圖3中,點E、F分別在BC、CD邊上,圖2中的四邊形EFGH是利用正方形網(wǎng)格在圖上畫出的矩形ABCD的反射四邊形.請你利用正方形網(wǎng)格在圖3上畫出矩形ABCD的反射四邊形EFGH;
(2)圖2、圖3中矩形ABCD的反射四邊形EFGH的周長是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的周長各是多少;
(3)圖2、圖3中矩形ABCD的反射四邊形EFGH的面積是否為定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出圖2、圖3中矩形ABCD的反射四邊形EFGH的面積各是多少.

查看答案和解析>>

同步練習冊答案