精英家教網 > 初中數學 > 題目詳情
已知:O為坐標原點,∠AOB=30°,∠ABO=90°且A(2,0).求:過A、B、O三點的二次函數解析式.
過B點作BC⊥OA,垂足為C,
在Rt△OAB中,OA=2,∠AOB=30°,
∴OB=
3

在Rt△OBC中,OB=
3
,∠BOC=30°,
∴OC=
3
2
,BC=
3
2
,
即B(
3
2
,
3
2
),
∵拋物線過O(0,0),A(2,0),
設拋物線解析式為y=ax(x-2),將B(
3
2
,
3
2
)代入,得
3
2
3
2
-2)a=
3
2
,
解得a=-
2
3
3
,
∴二次函數解析式為y=-
2
3
3
x(x-2)=-
2
3
3
x2+
4
3
3
x.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點A(x1,0)和B(x2,0),與y軸的正半軸交于點C.如果x1、x2是方程x2-x-6=0的兩個根(x1<x2),且△ABC的面積為
15
2

(1)求此拋物線的解析式;
(2)求直線AC和BC的方程;
(3)如果P是線段AC上的一個動點(不與點A、C重合),過點P作直線y=m(m為常數),與直線BC交于點Q,則在x軸上是否存在點R,使得△PQR為等腰直角三角形?若存在,求出點R的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,一橋拱呈拋物線狀,橋的最大高度是16米,跨度是40米,在線段AB上離中心M處5米的地方,橋的高度是______m(π取3.14).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,用長為32米的籬笆圍成一個外形為矩形的花圃,花圃的一邊利用原有墻,中間用2道籬笆割成3個小矩形.已知原有墻的最大可利用長度為15米,花圃的面積為S平方米,平行于原有墻的一邊BC長為x米.
(1)求S關于x的函數關系式;
(2)當圍成的花圃面積為60平方米時,求AB的長;
(3)能否圍成面積比60平方米更大的花圃?如果能,那么最大的面積是多少?如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

寫出下列函數的關系式:有一個角是60°的直角三角形的面積S與斜邊x的之間的函數關系式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖1所示,已知二次函數y=ax2-6ax+c與x軸分別交于點A(2,0)、B(4,0),與y軸交于點C(0,-8t)(t>0).
(1)求a、c的值及拋物線頂點D的坐標(用含t的代數式表示);
(2)如圖1,連接AC,將△OAC沿直線AC翻折,若點O的對應點O′恰好落在該拋物線的對稱軸上,求實數t的值;
(3)如圖2,在正方形EFGH中,點E、F的坐標分別是(4,-4)、(4,-3),邊HG位于邊EF的右側.若點P是邊EF或邊FG上的任意一點(不與E、F、G重合),請你說明以PA、PB、PC、PD的長度為邊長不能構成平行四邊形;
(4)將(3)中的正方形EFGH水平移動,若點P是正方形邊FG或EH上任意一點,在水平移動過程中,是否存在點P,使以PA、PB、PC、PD的長度為邊長構成平行四邊形,其中PA、PB為對邊.若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(t007•呼倫貝爾)某車間有t0名工人,每人每天可加工甲種零件5個或乙種零件4個,每加工一個甲種零件可獲利16元,每加工一個乙種零件可獲利t4元.現要求加工甲種零件的人數不少于加工乙種零件人數的t倍,設每天所獲利潤為y元,那么多少人加工甲種零件時,每天所獲利潤最大,每天所獲最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在一塊三角形區(qū)域ABC中,∠C=90°,邊AC=8,BC=6,現要在△ABC內建造一個矩形水池DEFG,如圖的設計方案是使DE在AB上.
(1)求△ABC中AB邊上的高h;
(2)設DG=x,當x取何值時,水池DEFG的面積最大?
(3)實際施工時,發(fā)現在AB上距B點1.85的M處有一棵大樹,問:這棵大樹是否位于最大矩形水池的邊上?如果在,為保護大樹,請設計出另外的方案,使三角形區(qū)域中欲建的最大矩形水池能避開大樹.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某商店經銷一種銷售成本為每千克40元的水產品,據市場分析,若按每千克50元銷售一個月能售出500千克;銷售單價每漲1元,月銷售量就減少10千克,商店想在月銷售成本不超過1萬元的情況下,使得月銷售利潤達到8000元,銷售單價應定為多少?

查看答案和解析>>

同步練習冊答案