【題目】小明家距離學(xué)校8千米,今天早晨,小明騎車上學(xué)途中,自行車出現(xiàn)故障,恰好路邊有便民服務(wù)點,幾分鐘后車修好了,他增加速度騎車到校.我們根據(jù)小明的這段經(jīng)歷畫了一幅圖象(如圖),該圖描繪了小明行的路程s與他所用的時間t之間的關(guān)系.
請根據(jù)圖象,解答下列問題:
(1)小明行了多少千米時,自行車出現(xiàn)故障?修車用了幾分鐘?
(2)小明共用了多少時間到學(xué)校的?
(3)如果自行車未出現(xiàn)故障,小明一直用修車前的速度行駛,那么他比實際情況早到或晚到多少分鐘?(結(jié)果精確到0.1)
【答案】(1)3千米;5分鐘;(2)30分鐘;(3)他比實際情況早到3.3分鐘.
【解析】
(1)根據(jù)自行車出現(xiàn)故障后路程s不變解答;修車的時間等于路程不變的時間;
(2)路程等于8千米時對應(yīng)的橫軸的時間即為用的時間;
(3)先求出修車前的速度,再求出未出故障需用的時間,然后與實際情況的時間比較即可進行判斷.
解:(1)由圖可知,小明行了3千米時,自行車出現(xiàn)故障,
修車用了15﹣10=5(分鐘);
(2)由圖象可知:小明共用了30分鐘到學(xué)校;
(3)修車前速度是:3÷10=千米/分,
若自行車未出現(xiàn)故障,小明一直用修車前的速度行駛需用時:(分鐘),
(分鐘);
答:他比實際情況早到3.3分鐘.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D, AC交⊙O于點E,∠BAC=45°。
(1)求∠EBC的度數(shù);
(2)求證:BD=CD。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列推理說明:
如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°( 。,
∴AB∥CD ( )
∴∠B= ( )
又∵∠B=∠D( 已知 ),
∴ ∠ = ∠ ( 等量代換。
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個橫縱坐標(biāo)分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→,…,根據(jù)這個規(guī)律,第2019個點的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,BC=2,CD是△ABC的一條高線.若E,F(xiàn)分別是CD和BC上的動點,則BE+EF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠A=90°,E是AD邊的中點,CE平分∠BCD.
(1)求證:BE平分∠ABC;
(2)若AB=2,CD=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 已知點A、點B是直線上的兩點,AB =12厘米,點C在線段AB上,且AC=8厘米.點P、點Q是直線上的兩個動點,點P的速度為1厘米/秒,點Q的速度為2厘米/秒.點P、Q分別從點C、點B同時出發(fā),在直線上運動,則經(jīng)過 秒時線段PQ的長為5厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.
下面有三個推斷:
①當(dāng)投擲次數(shù)是500時,計算機記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;
②隨著實驗次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
③若再次用計算機模擬實驗,則當(dāng)投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.
其中合理的是( )
A.①
B.②
C.①②
D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com