【題目】如圖,⊙P與y軸相切于點(diǎn)C(0,3),與x軸相交于點(diǎn)A(1,0),B(9,0).直線y=kx-3恰好平分⊙P的面積,那么k的值是 ( )
A.
B.
C.
D. 2
【答案】A
【解析】
連接PC,PA,過點(diǎn)P作PD⊥AB于點(diǎn)D,根據(jù)切線的性質(zhì)可知PC⊥y軸,故可得出四邊形PDOC是矩形,所以PD=OC=3,再求出AB的長,由垂徑定理可得出AD的長,故可得出OD的長,進(jìn)而得出P點(diǎn)坐標(biāo),再把P點(diǎn)坐標(biāo)代入直線y=kx-3即可得出結(jié)論.
連接PC,PA,過點(diǎn)P作PD⊥AB于點(diǎn)D,∵⊙P與y軸相切于點(diǎn)C(0,3),∴PC⊥y軸,∴四邊形PDOC是矩形,∴PD=OC=3,∵A(1,0),B(9,0),∴AB=9-1=8,∴AD=AB=×8=4,∴OD=AD+OA=4+1=5,∴P(5,3),∵直線y=kx-3恰好平分⊙P的面積,∴點(diǎn)P在直線y=kx-3上,∴3=5k-3,解得.故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,AB⊥BC于點(diǎn)B,底座BC=1.3米,底座BC與支架AC所成的角∠ACB=60°,點(diǎn)H在支架AF上,籃板底部支架EH∥BC.EF⊥EH于點(diǎn)E,已知AH=米,HF=米,HE=1米.
(1)求籃板底部支架HE與支架AF所成的∠FHE的度數(shù).
(2)求籃板底部點(diǎn)E到地面的距離,(精確到0.01米)(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=5,BC=6,點(diǎn)M,N分別在AD,BC上,且AM=AD,BN=BC,E為直線BC上一動點(diǎn),連接DE,將△DCE沿DE所在直線翻折得到△DC′E,當(dāng)點(diǎn)C′恰好落在直線MN上時,CE的長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形紙片,將△BCD沿BD折疊,得到△BED,BE交AD于點(diǎn)F,AB=3.AF:FD=1:2,則AF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠BAD=120°,點(diǎn)E在射線AC上(不包括點(diǎn)A和點(diǎn)C),過點(diǎn)E的直線GH交直線AD于點(diǎn)G,交直線BC于點(diǎn)H,且GH∥DC,點(diǎn)F在BC的延長線上,CF=AG,連接ED,EF,DF.
(1)如圖1,當(dāng)點(diǎn)E在線段AC上時,
①判斷△AEG的形狀,并說明理由.
②求證:△DEF是等邊三角形.
(2)如圖2,當(dāng)點(diǎn)E在AC的延長線上時,△DEF是等邊三角形嗎?如果是,請證明你的結(jié)論;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2a,E為BC邊的中點(diǎn), 的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),畫出這個二次函數(shù)的圖象,根據(jù)圖象回答下列問題:
(1)方程的解是什么?
(2)x取什么值時,函數(shù)值大于?取什么值時,函數(shù)值小于?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是一個橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4 m時,拱頂(拱橋洞的最高點(diǎn))離水面2 m,當(dāng)水面下降1 m時,水面的寬度為_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠A為銳角,CD為AB邊上的高,I為△ACD的內(nèi)切圓圓心,則∠AIB的度數(shù)是( )
A. 120°B. 125°C. 135°D. 150°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com