(2012•梅州)如圖,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,則EF=
2
2
分析:作EG⊥OA于F,根據(jù)角平分線的性質(zhì)得到EG的長度,再根據(jù)平行線的性質(zhì)得到∠OEF=∠COE=15°,然后利用三角形的外角和內(nèi)角的關系求出∠EFG=30°,利用30°角所對的直角邊是斜邊的一半解題.
解答:解:作EG⊥OA于G,
∵EF∥OB,
∴∠OEF=∠COE=15°,
∵∠AOE=15°,
∴∠EFG=15°+15°=30°,
∵EG=CE=1,
∴EF=2×1=2.
故答案為2.
點評:本題考查了角平分線的性質(zhì)和含30°角的直角三角形,綜合性較強,是一道好題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•梅州)如圖,矩形OABC中,A(6,0)、C(0,2
3
)、D(0,3
3
),射線l過點D且與x軸平行,點P、Q分別是l和x軸正半軸上動點,滿足∠PQO=60°.

(1)①點B的坐標是
(6,2
3
(6,2
3
;②∠CAO=
30
30
度;③當點Q與點A重合時,點P的坐標為
(3,3
3
(3,3
3
;(直接寫出答案)
(2)設OA的中心為N,PQ與線段AC相交于點M,是否存在點P,使△AMN為等腰三角形?若存在,請直接寫出點P的橫坐標為m;若不存在,請說明理由.
(3)設點P的橫坐標為x,△OPQ與矩形OABC的重疊部分的面積為S,試求S與x的函數(shù)關系式和相應的自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案