【題目】如圖,直線y=﹣x+2分別與x軸,y軸交于點(diǎn)A,B,點(diǎn)C是反比例函數(shù)y=的圖象在第一象限內(nèi)一動點(diǎn).過點(diǎn)C作直線CD⊥AB.交x軸于點(diǎn)D,交AB于點(diǎn)E.則CE:DE的最小值為_____.
【答案】
【解析】
連接AC,根據(jù)題意得到A、B的坐標(biāo),以及△ADE∽△ABO,即可求得==,進(jìn)一步求得==2tan∠CAE,當(dāng)∠CAE最小,即AC與雙曲線(x>0)只有一個交點(diǎn)時,最小,設(shè)AC的解析式為y=kx﹣4k,則,消去y整理得到kx2﹣4kx﹣4=0,當(dāng)AC與雙曲線(x>0)只有一個交點(diǎn)時,△=16k2+16k=0,解得k的值,即可求得AC的解析式,進(jìn)而求得C,D、E的坐標(biāo),然后根據(jù)平行線分線段成比例求得CE:DE的最小值為.
解:如圖,連接AC,
∵直線y=﹣x+2分別與x軸,y軸交于點(diǎn)A,B,
∴A(4,0),B(0,2),
∵CD⊥AB,
∴∠AED=∠AOB=90°,
∵∠DAE=∠BAO,
∴△ADE∽△ABO,
∴==,
∴==2tan∠CAE,
∴當(dāng)∠CAE最小,即AC與雙曲線(x>0)只有一個交點(diǎn)時,最小,
設(shè)AC的解析式為y=kx﹣4k,則,消去y整理得:kx2﹣4kx﹣4=0,
當(dāng)AC與雙曲線(x>0)只有一個交點(diǎn)時,△=16k2+16k=0,解得k=﹣1或k=0(舍去),
∴AC的解析式為y=﹣x+4,
解得,
∴C(2,2),
設(shè)CD的解析式為y=2x+n,則2=4+n,
解得n=﹣2,
∴CD的解析式為y=2x﹣2,
∴D(1,0),
解得,
∴E(,),
過E點(diǎn)作MN⊥x軸于N,交過C點(diǎn)與x軸平行的直線于M,
∴MC∥DN,
∴===,
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)片與的圖象如圖所示,下列說法:
①ab<0;
②函數(shù)y=ax+d不經(jīng)過第一象限;
③函數(shù)y=cx+b中,y隨x的增大而增大;
④3a+b=3c+d
其中正確的個數(shù)有()
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,線段OB的長是方程x2﹣2x﹣8=0的解,tan∠BAO=.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)E在y軸負(fù)半軸上,直線EC交線段AB于點(diǎn)C,交x軸于點(diǎn)D.若C點(diǎn)坐標(biāo)為(-6.m),求:直線AB的表達(dá)式和經(jīng)過點(diǎn)C得反比例函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】成都市某公司自主設(shè)計了一款可控溫杯,每個生產(chǎn)成本為16元,投放市場進(jìn)行了試銷.經(jīng)過調(diào)查得到每月銷售量y(萬個)與銷售單價x(元/個)之間關(guān)系是一次函數(shù)的關(guān)系,部分?jǐn)?shù)據(jù)如下:
銷售單價x(元/個) | … | 20 | 25 | 30 | 35 | … |
每月銷售量y(萬個) | … | 60 | 50 | 40 | 30 | … |
(1)求y與x之間的函數(shù)關(guān)系;
(2)該公司既要獲得一定利潤,又要符合相關(guān)部門規(guī)定(一件產(chǎn)品的利潤率不得高于50%)請你幫助分析,公司銷售單價定為多少時可獲利最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AO平分∠BAC,交BC于點(diǎn)O.以O為圓心,OC為半徑作⊙O,分別交AO,BC于點(diǎn)E,F.
(1)求證:AB是⊙O的切線;
(2)延長AO交⊙O于點(diǎn)D,連接CD,若AD=2AC,求tanD的值;
(3)在(2)的條件下,設(shè)⊙O的半徑為3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推廣勞動教育,美化校園環(huán)境,學(xué)校決定在農(nóng)場基地鋪設(shè)一條觀景小道.經(jīng)設(shè)計,鋪設(shè)這條小道需A,B兩種型號石磚共200塊.已知:購買3塊A型石磚,2塊B型石磚需要110元;購買5塊A型石磚,4塊B型石磚需要200元.
(1)求A,B兩種型號石磚單價各為多少元?
(2)已知B型石磚正在進(jìn)行促銷活動:購買B型石磚數(shù)量在60塊以內(nèi)(包括60塊)時,不優(yōu)惠;購買B型石磚數(shù)量超過60塊時,每超過1塊,購買的所有B型石磚單價均降0.05元,問:學(xué)校采購石磚,最多需要多少預(yù)算經(jīng)費(fèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次臺風(fēng)來襲時,一棵筆直大樹樹干AB(假定樹干AB垂直于水平地面)被刮傾斜7°(即∠BAB′=7°)后折斷倒在地上,樹的頂部恰好接觸到地面D處,測得∠CDA=37°,AD=5米,求這棵大樹AB的高度.(結(jié)果保留根號)(參考數(shù)據(jù):sin37≈0.6,cos37=0.8,tan37≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解家長和學(xué)生參與“全國中小學(xué)生新冠肺炎疫情防控”專題教育的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:A.僅學(xué)生自己參與;B.家長和學(xué)生一起參與;C.僅家長參與;D.家長和學(xué)生都未參與.請根據(jù)圖中提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,共調(diào)查了______名學(xué)生;
(2)C類所對應(yīng)扇形的圓心角的度數(shù)是_______,并補(bǔ)全條形統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,試估計該校1800名學(xué)生中“家長和學(xué)生都未參與”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a>0)交x軸于A,B兩點(diǎn)(A在B的左側(cè)),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為P,過點(diǎn)B作BC的垂線交拋物線于點(diǎn)D.
(1)若點(diǎn)P的坐標(biāo)為(-4,-1),點(diǎn)C的坐標(biāo)為(0,3),求拋物線的表達(dá)式;
(2)在(1)的條件下,求點(diǎn)A到直線BD的距離;
(3)連接DC,若點(diǎn)P的坐標(biāo)為(-,-),DC∥x軸,則在x軸上方的拋物線上是否存在點(diǎn)M,使∠AMB=∠BDC?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com