有兩棵樹(shù),一棵高10m,另一棵高4m,兩樹(shù)相距8m.一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,問(wèn)小鳥(niǎo)至少飛行


  1. A.
    8m
  2. B.
    10m
  3. C.
    12m
  4. D.
    14m
B
分析:根據(jù)“兩點(diǎn)之間線段最短”可知:小鳥(niǎo)沿著兩棵樹(shù)的樹(shù)梢進(jìn)行直線飛行,所行的路程最短,運(yùn)用勾股定理可將兩點(diǎn)之間的距離求出.
解答:解:如圖,設(shè)大樹(shù)高為AB=10m,
小樹(shù)高為CD=4m,
過(guò)C點(diǎn)作CE⊥AB于E,則四邊形EBDC是矩形,
連接AC,
∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,
在Rt△AEC中,AC==10m.
故選B.
點(diǎn)評(píng):本題考查正確運(yùn)用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,有兩棵樹(shù),一棵高10米,另一棵高4米,兩樹(shù)相距8米.一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,問(wèn)小鳥(niǎo)至少飛行多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,有兩棵樹(shù),一棵高10 m,另一棵高4 m,兩樹(shù)相距8 m.一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,問(wèn)小鳥(niǎo)至少飛行(     )

A.8 m                 B.10 m          C.12 m                  D.14 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年浙教版初中數(shù)學(xué)八年級(jí)上2.6探索勾股定理練習(xí)卷(解析版) 題型:解答題

如圖,有兩棵樹(shù),一棵高10米,另一棵高4米,兩樹(shù)相距8米.一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,問(wèn)小鳥(niǎo)至少飛行多少米?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(湖南衡陽(yáng)卷)數(shù)學(xué) 題型:解答題

如圖7,有兩棵樹(shù),一棵高10米,另一棵高4米,兩樹(shù)相距8米. 一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,問(wèn)小鳥(niǎo)至少飛行多少米?

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年江蘇省徐州市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

如圖,有兩棵樹(shù),一棵高10米,另一棵高4米,兩樹(shù)相距8米.一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,問(wèn)小鳥(niǎo)至少飛行多少米?

查看答案和解析>>

同步練習(xí)冊(cè)答案