【題目】計算:(﹣10)﹣(﹣2)+(﹣6)﹣11
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列式子變形正確的是( 。
A. ﹣(m+2)=﹣m+2 B. 3m﹣6m=﹣3m C. 2(a+b)=2a+b D. π﹣3=3﹣π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點F是CD 的中點,且AF⊥CD,BC=ED,∠BCD=∠EDC.
(1)求證:BF=EF;
(2)求證:AB=AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為有理數(shù),且a>0,b<0,a+b<0,將四個數(shù)a,b,﹣a,﹣b按由大到小的順序排列是_____.(用“>”號連接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)專著,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》中記載:“今有共買羊,人出五,不足四十五;人出七,不足三.問人數(shù)、羊價各幾何?”譯文:“假設(shè)有若干人共同出錢買羊,如果每人出5錢,那么還差45錢;如果每人出7錢那么仍舊差3錢,求買羊的人數(shù)和羊的價錢.”設(shè)共有x個人買羊,可列方程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅和小明在研究一個數(shù)學(xué)問題:已知AB∥CD,AB和CD都不經(jīng)過點E,探索∠E與∠A,∠C的數(shù)量關(guān)系.
(1)發(fā)現(xiàn):在圖1中,小紅和小明都發(fā)現(xiàn):∠AEC=∠A+∠C; 小紅是這樣證明的:如圖7過點E作EQ∥AB.
∴∠AEQ=∠A()
∵EQ∥AB,AB∥CD.
∴EQ∥CD()
∴∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C 即∠AEC=∠A+∠C.
小明是這樣證明的:如圖7過點E作EQ∥AB∥CD.
∴∠AEQ=∠A,∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C
請在上面證明過程的橫線上,填寫依據(jù):
兩人的證明過程中,完全正確的是 .
(2)嘗試: ①在圖2中,若∠A=110°,∠C=130°,則∠E的度數(shù)為;
②在圖3中,若∠A=20°,∠C=50°,則∠E的度數(shù)為 .
(3)探索: 裝置圖4中,探索∠E與∠A,∠C的數(shù)量關(guān)系,并說明理由.
(4)猜想: 如圖5,∠B、∠D、∠E、∠F、∠G之間有什么關(guān)系?(直接寫出結(jié)論)
(5)如圖6,你可以得到什么結(jié)論?(直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點B在x軸的正半軸上,已知∠OBA=90°,OB=3,sin∠AOB=.反比例函數(shù)y=(x>0)的圖象經(jīng)過點A.
(1)求反比例函數(shù)的解析式;
(2)若點C(m,2)是反比例函數(shù)y=(x>0)圖象上的點,則在x軸上是否存在點P,使得PA+PC最?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com