【題目】如圖,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)A(m,3)和B(3,1).
(1)填空:一次函數(shù)的解析式為 , 反比例函數(shù)的解析式為;
(2)點(diǎn)P是線段AB上一點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,連接OP,若△POD的面積為S,求S的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長線交于點(diǎn)F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市某校對初三綜合素質(zhì)測評中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評價(jià)得分由測試成績(滿分100分)和平時(shí)成績(滿分 100 分)兩部分組成,其中測試成績占 80%,平時(shí)成績占 20%,并且當(dāng)綜合評價(jià)得分大于或
等于80 分時(shí),該生綜合評價(jià)為A 等.
(1)小明同學(xué)的測試成績和平時(shí)成績兩項(xiàng)得分之和為185 分,而綜合評價(jià)得分為91 分,則小明同學(xué)測試成績和平時(shí)成績各得多少分?
(2)某同學(xué)測試成績?yōu)?0 分,他的綜合評價(jià)得分有可能達(dá)到A 等嗎?為什么?
(3)如果一個(gè)同學(xué)綜合評價(jià)要達(dá)到A 等,他的測試成績至少要多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校九年級學(xué)生足球訓(xùn)練情況,隨機(jī)抽查該年級若干名學(xué)生進(jìn)行測試,然后把測試結(jié)果分為4個(gè)等級:A、B、C、D,并將統(tǒng)計(jì)結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中的信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖
(2)該年級共有700人,估計(jì)該年級足球測試成績?yōu)镈等的人數(shù)多少人;
(3)在此次測試中,有甲、乙、丙、丁四個(gè)班的學(xué)生表現(xiàn)突出,現(xiàn)決定從這四個(gè)班中隨機(jī)選取兩個(gè)班在全校舉行一場足球友誼賽.請用畫樹狀圖或列表的方法,求恰好選到甲、乙兩個(gè)班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動到點(diǎn)A,圖2是點(diǎn)P運(yùn)動時(shí),線段BP的長度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)分別為A(1,2),B(4,2),C(4,4).若反比例函數(shù)y= 在第一象限內(nèi)的圖象與△ABC有交點(diǎn),則k的取值范圍是( )
A.1≤k≤4
B.2≤k≤8
C.2≤k≤16
D.8≤k≤16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點(diǎn)O,在BA的延長線上取一點(diǎn)E,連接OE交AD于點(diǎn)F.若CD=5,BC=8,AE=2,則AF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過點(diǎn)E作EC⊥OA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是邊長為1的正方形ABCD對角線AC上一動點(diǎn)(P與A、C不重合),點(diǎn)E在線段BC上,且PE=PB.
(1)求證:①PE=PD;②PE⊥PD;
(2)設(shè)AP=x,△PBE的面積為y.
①求出y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
②當(dāng)x取何值時(shí),y取得最大值,并求出這個(gè)最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com