已知:點(diǎn)A、F、E、C在同一條直線上,AF=CE,BE∥DF,BE=DF.求證:△ABE≌△CDF.
分析:先根據(jù)AF=CE得出AE=CF,再根據(jù)平行線的性質(zhì)得出∠A=∠C,由全等三角形的判定定理即可得出結(jié)論.
解答:解:∵AF=CE,
∴AF+EF=CE+EF,即AE=CF,
∵BE∥DF,
∴∠DFE=∠FEB,
在△ABE與△CDF中,
AE=CF
∠DFE=∠FEB
BE=DF
,
∴△ABE≌△CDF.
點(diǎn)評(píng):本題考查的是全等三角形的判定,判定兩個(gè)三角形全等,先根據(jù)求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知?jiǎng)狱c(diǎn)P在函數(shù)y=
1
2x
(x>0)的圖象上運(yùn)動(dòng),PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,線段PM、PN分別與直線AB:y=-x+1交于點(diǎn)E,F(xiàn),則AF•BE的值為( 。
A、4
B、2
C、1
D、
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:點(diǎn)P的坐標(biāo)是(m,-1),且點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)是(-3,2n),則m=
 
,n=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知C點(diǎn)為線段AB的中點(diǎn),D點(diǎn)為BC的中點(diǎn),AB=10cm,求AD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A點(diǎn)的坐標(biāo)為(2,0),點(diǎn)B在直線y=-x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)有彈性的球從A點(diǎn)落下到地面,彈起后,到B點(diǎn)又落到高為20cm的平臺(tái)上,再彈起到C點(diǎn),然后,又落到地面(如圖),每次彈起的高度為落下高度的
45
,已知A點(diǎn)離地面比C點(diǎn)離地面高出68cm,那么A′點(diǎn)離地面的高度是
200
200
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案