在直角坐標(biāo)系中,∠ABC=∠BDE=90°,BC=DE,AC=BE,M、N分別是AB、BD的中點(diǎn),連接MN交CE于點(diǎn)K.

(1)如圖1,已知A點(diǎn)的坐標(biāo)為(3,0),C點(diǎn)的坐標(biāo)為(-4,2),求D點(diǎn)的坐標(biāo).
(2)如圖2,當(dāng)C、B、D共線,AB=2BC時(shí),探究CK與EK之間的數(shù)量關(guān)系,并證明.
(3)如圖3,當(dāng)C、B、D不共線,AB≠BC時(shí),(2)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

解(1)如圖1,在Rt△BDE和Rt△ABC中,

∴Rt△BDE≌Rt△ABC,
∴BD=AB,
∵C(-4,2),∠ABC=90°,
∴B(-4,0).
∵A(3,0),
∴AB=7,
∴BD=7
D(-4,-7);
(2)如圖2,CK=EK
理由:連EM、CN,
∵AB=2BC,AB=BD,
∴BD=2BC,
∵M(jìn)、N分別是AB、BD的中點(diǎn),
∴AB=2BM,BD=2BN=2ND,
∴BC=BM=BN=DN,
∵DE=BC,
∴DE=DN.
∵∠ABC=∠BDE=90°,
∴∠DEN=∠DNE=∠BNM=∠BMN=45°,
∴∠MNE=180°-45°-45°=90°,
在△MBN和△NDE中,
,
∴△MBN≌△NDE(SAS),
∴MN=EN,
∴△MNE是等腰直角三角形,
∴∠NME=45°,
∴∠BME=90°,
∴四邊形BDEM是矩形,
∴EM=DB,BD∥EM,
∴EM=NC.∠CEM=∠NCE,∠NME=∠MNC,
在△EMK和△CNK中,
,
∴△EMK≌△CNK,
∴CK=EK.
(3)如圖3,MN交BE、AC于F、G,過E、C作MN的垂線,垂足為Q、P,連結(jié)CM、EN,
∴∠EQN=∠EQK=∠CPM=90°.
∵AB=BD,M、N是AB、BD的中點(diǎn),
∴DN=BN=BM=AM,
∴∠2=∠BMN,
∵∠1=∠BMN,
∴∠2=∠1.
在△EDN和△CBM中
,
∴△EDN≌△CBM(SAS),
∴EN=CM.
在△BNE和△AMC中
,
∴△BNE≌△AMC(SSS),
∴∠7=∠8,∠ENB=∠CMA,
∴∠ENB-∠2=∠CMA-∠1,
即∠3=∠4.
在△EQN和△CPM中,
,
∴△EQN≌△CPM(AAS),
∴EQ=CP.
在△EQK和△CPK中,

∴△EQK≌△CPK(AAS),
∴EK=CK.

分析:(1)證明△BDE≌△ABC,可得BD=AB,根據(jù)點(diǎn)M是AB的中點(diǎn)可求出BM的長(zhǎng)度,繼而可得點(diǎn)D的坐標(biāo);
(2)連接CM、BN,由已知易證得△ABC≌△BDE,可得到AB=BD;再通過證明△BCM≌△DEN,得CN=NE;接下來易證得△CMK≌△ENK,即可得CK=EK.
(3)過C、E分別作直線MK的垂線段,垂足分別為P、Q,首先證明△CMP≌△ENQ,可得PC=QE,然后易證明△CPQ≌△EQK,即得CK=EK.
點(diǎn)評(píng):本題是一道綜合型很強(qiáng)的試題,考查了全等三角形的判定及性質(zhì)的運(yùn)用,線段中點(diǎn)的運(yùn)用,等腰直角三角形的性質(zhì)的運(yùn)用,點(diǎn)的坐標(biāo)的運(yùn)用,解答時(shí)靈活運(yùn)用全等三角形的性質(zhì)制造三角形全等是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中有三點(diǎn)A(0,1),B(1,3),C(2,6);已知直線y=ax+b上橫坐標(biāo)為0、1、2的點(diǎn)分別為D、E、F.試求a,b的值使得AD2+BE2+CF2達(dá)到最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,某三角形三個(gè)頂點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都增加2個(gè)單位,則所得三角形與原三角形相比( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,將坐標(biāo)為(5,6),(1,2),(3,2),(3,0),(7,0),(7,2),(9,2),(5,6)的點(diǎn)用線段依此連接起來形成一個(gè)圖案.
(1)縱坐標(biāo)保持不變,橫坐標(biāo)分別減去3呢,與原圖形相比,所得圖形有什么變化?
(2)橫坐標(biāo)保持不變,縱坐標(biāo)分別乘以-1,與原圖形相比,所得圖形有什么變化?
(3)橫坐標(biāo)加上2,縱坐標(biāo)減去3呢,與原圖形相比,所得圖形有什么變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABO是正三角形,若點(diǎn)B的坐標(biāo)是(-2,0),則點(diǎn)A的坐標(biāo)是
(-1,
3
),(-1,-
3
)
(-1,
3
),(-1,-
3
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC在直角坐標(biāo)系中,
(1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo);
(2)求出S△ABC;
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△A′B′C′,在圖中畫出△ABC變化后的圖形,并判斷線段AB和線段A′B′的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案