如圖,PA、PB是⊙O的切線,切點(diǎn)為A、B,C是⊙O上的一點(diǎn),已知∠APB=76°,則∠ACB=
52°
52°
分析:連接OB、OA、由切線性質(zhì)得出∠PBO=∠PAO=90°,求出∠AOB的度數(shù),根據(jù)圓周角定理得出∠ACB=
1
2
∠AOB,求出即可.
解答:解:
連接OB、OA、
∵PA、PB是⊙O的切線,切點(diǎn)為A、B,
∴∠PBO=∠PAO=90°,
∵∠APB=76°,
∴∠AOB=360°-∠PBO-∠PAO-∠APB=104°,
∴由圓周角定理得:∠ACB=
1
2
∠AOB=
1
2
×104°=52°,
故答案為:52°.
點(diǎn)評(píng):本題考查了多邊形的內(nèi)角和定理,切線的性質(zhì),圓周角定理的應(yīng)用,關(guān)鍵是求出∠AOB的度數(shù)和得出∠ACB=
1
2
∠AOB.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA,PB是⊙O的切線,切點(diǎn)分別為A,B,且∠APB=50°,點(diǎn)C是優(yōu)弧
AB
上的一點(diǎn),則∠ACB的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠OAB=30度.
(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時(shí),求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,PA、PB是⊙O的兩條切線,A、B是切點(diǎn),連接AB,直線PO交AB于M.請(qǐng)你根據(jù)圓的對(duì)稱性,寫出△PAB的三個(gè)正確的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,PA,PB是⊙O是切線,A,B為切點(diǎn),AC是⊙O的直徑,若∠BAC=25°,則∠P=
50
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•谷城縣模擬)如圖,PA、PB是⊙O 的切線,切點(diǎn)分別是A、B,點(diǎn)C是⊙O上異與點(diǎn)A、B的點(diǎn),如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

查看答案和解析>>

同步練習(xí)冊(cè)答案