【題目】有兩個內(nèi)角分別是它們對角的一半的四邊形叫做半對角四邊形.
(1)如圖1,在半對角四邊形ABCD中,∠B= ∠D,∠C= ∠A,求∠B與∠C的度數(shù)之和;

(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點D,使得BD=BO.∠OBA的平分線交OA于點E,連結(jié)DE并延長交AC于點F,∠AFE=2∠EAF.

求證:四邊形DBCF是半對角四邊形;
(3)如圖3,在(2)的條件下,過點D作DG⊥OB于點H,交BC于點G.當(dāng)DH=BG時,求△BGH與△ABC的面積之比.

【答案】
(1)

解:在半對角四邊形ABCD中,∠B=∠D,∠C=∠A.

∵∠A+∠B+∠C+∠D=360°,

∴3∠B+3∠C=360°.

∴∠B+∠C=120°.

即∠B與∠C的度數(shù)之和120°.


(2)

證明:在△BED和△BEO中,

.

∴△BED≌△BEO(SAS).

∴∠BDE=∠BOE.

又∵∠BCF=∠BOE.

∴∠BCF=∠BDE.

如下圖,連結(jié)OC.

設(shè)∠EAF=.則∠AFE=2∠EAF=2.

∴∠EFC=180°-∠AFE=180°-2.

∵OA=OC,

∴∠OAC=∠OCA=.

∴∠AOC=180°-∠OAC-∠OCA=180°-2.

∴∠ABC=∠AOC=∠EFC.

∴四邊形DBCF是半對角四邊形.


(3)

解:如下圖,作過點OM⊥BC于點M.

∵四邊形DBCF是半對角四邊形,

∴∠ABC+∠ACB=120°.

∴∠BAC=60°.

∴∠BOC=2∠BAC=120°.

∵OB=OC

∴∠OBC=∠OCB=30°.

∴BC=2BM=BO=BD.

∵DG⊥OB,

∴∠HGB=∠BAC=60°.

∵∠DBG=∠CBA,

∴△DBG△CBA.

=2=.

∵DH=BG,BG=2HG.

∴DG=3HG.

=

=.


【解析】(1)在半對角四邊形ABCD中,∠B=∠D,∠C=∠A;根據(jù)四邊形的內(nèi)角和為360°,得出∠B與∠C的度數(shù)之和.
(2)如圖連接OC,根據(jù)條件先證△BED≌△BEO,再根據(jù)全等三角形的性質(zhì)得出∠BCF=∠BOE=∠BDE;設(shè)∠EAF=.則∠AFE=2∠EAF=2得出∠EFC=180°-∠AFE=180°-2;再根據(jù)OA=OC得出∠OAC=∠OCA= , 根據(jù)三角形內(nèi)角和得出∠AOC=180°-∠OAC-∠OCA=180°-2;從而得證.
(3)如下圖,作過點OM⊥BC于點M,由四邊形DBCF是半對角四邊形,得出∠ABC+∠ACB=120°,∠BAC=60°.∠BOC=2∠BAC=120°;再由OB=OC,得出∠OBC=∠OCB=30°.BC=2BM=BO=BD;根據(jù)△DBG~△CBA得出答案.
【考點精析】掌握三角形的內(nèi)角和外角和等腰三角形的性質(zhì)是解答本題的根本,需要知道三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:

(1)如果∠1=∠B,那么______________,根據(jù)是__________________________;

(2)如果∠3=∠D,那么______________,根據(jù)是__________________________;

(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果種植場今年收獲的妃子笑無核兩種荔枝共3200 千克,全部售出后賣了30400 元.已知妃子笑荔枝每千克售價8 元,無核荔枝每千克售價12 元,問該種植場今年這兩種荔枝各收獲多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù) 的圖象與反比例函數(shù) 的圖象交于A、B兩點,點C在x軸負(fù)半軸上,AC=AO,△ACO的面積為12.

(1)求k的值;
(2)根據(jù)圖象,當(dāng) 時,寫出自變量 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)南充市創(chuàng)建全國衛(wèi)生城市的號召,某校1 500名學(xué)生參加了衛(wèi)生知識競賽,成績記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績進(jìn)行統(tǒng)計,繪制成如下兩幅不完整的統(tǒng)計圖表,根據(jù)圖表信息,以下說法不正確的是( )

A.樣本容量是200

B.D等所在扇形的圓心角為15°

C.樣本中C等所占百分比是10%

D.估計全校學(xué)生成績?yōu)锳等大約有900人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某長途汽車客運公司規(guī)定旅客可免費攜帶一定質(zhì)量的行李,當(dāng)行李的質(zhì)量超過規(guī)定時,需付的行李費 (元)是行李質(zhì)量 )的一次函數(shù).已知行李質(zhì)量為 時需付行李費 元,行李質(zhì)量為 時需付行李費 元.
(1)當(dāng)行李的質(zhì)量 超過規(guī)定時,求 之間的函數(shù)表達(dá)式;
(2)求旅客最多可免費攜帶行李的質(zhì)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列不等式或不等式組并把它們的解集在數(shù)軸上表示出來

(1)5x15>4x13;             (2) ;

(3) (4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點,AOC50°,OD平分AOC,DOE90°,

(1)BOC的度數(shù);

(2)通過計算判斷OE是否平分BOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖∠BAC=30°,D 為角平分線上一點,DEAC E,DFAC且交ABF.

(1)求證:ADF 是等腰三角形.

(2) DF=10cm,求 DE的長.

查看答案和解析>>

同步練習(xí)冊答案