【題目】(分類討論思想)已知直線l是線段AB的垂直平分線,點(diǎn)M,N是直線l上的兩點(diǎn),如果∠NBA=15°,∠MBA=45°,則∠MAN=________.

【答案】30°或60°

【解析】

根據(jù)線段垂直平分線的性質(zhì)定理可知,MA=MB,NA=NB,

所以∠MAB=∠MBA=45°,∠NAB=∠NBA=15°,

當(dāng)點(diǎn)M,N在線段AB的同側(cè)時,∠MAN=∠MAB-∠NAB=45°-15°=30°;

當(dāng)點(diǎn)M,N在線段AB的異側(cè)時,∠MAN=∠MAB+∠NAB=45°+15°=60°.

故答案為30°60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,三角形ABC的頂點(diǎn)都在網(wǎng)格上,平移三角形ABC,使點(diǎn)C與坐標(biāo)原點(diǎn)O重合.

(1)請寫出圖中點(diǎn)A,B,C的坐標(biāo);

(2)畫出平移后的三角形OA1B1;

(3)求三角形OA1A的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是(

A.CB=CD
B.∠BAC=∠DAC
C.∠BCA=∠DCA
D.∠B=∠D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程kx2+2x﹣1=0有兩個不相等的實(shí)數(shù)根,則k的取值范圍是(
A.k>﹣1
B.k>1
C.k≠0
D.k>﹣1且k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

求證:
(1)△BAD≌△CAE;
(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:
分解因式:x2+2x﹣3
解:原式=x2+2x+1﹣4=(x+1)2﹣4
=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)
此種方法抓住了二次項(xiàng)和一次項(xiàng)的特點(diǎn),然后加一項(xiàng),使這三項(xiàng)成為完全平方式,我們把這種分解因式的方法叫配方法.請仔細(xì)體會配方法的特點(diǎn),然后嘗試用配方法解決下列問題:
(1)分解因式x2﹣2x﹣3=;a2﹣4ab﹣5b2=;
(2)無論m取何值,代數(shù)式m2+6m+13總有一個最小值,請你嘗試用配方法求出它的最小值;
(3)觀察下面這個形式優(yōu)美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]
該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美.
請你說明這個等式的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰△ABC的周長為19,底邊BC=5,AB的垂直平分線DE交AB于點(diǎn)D,交AC于點(diǎn)E,則△BEC的周長為( )

A.9
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個紙盒里裝有四張除數(shù)字以外完全相同卡片,四張卡片上的數(shù)字分別為1,2,3,4.先從紙盒里隨機(jī)取出一張,記下數(shù)字為,再從剩下的三張中隨機(jī)取出一張,記下數(shù)字為,這樣確定了點(diǎn)P的坐標(biāo)( ).

(1)請你運(yùn)用畫樹狀圖或列表的方法,寫出點(diǎn)P所有可能的坐標(biāo);

(2)求點(diǎn)P(, )在函數(shù)=-+4圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC為弦,D的中點(diǎn),AC,BD相交于E點(diǎn),過點(diǎn)A作⊙O的切線交BD的延長線于P點(diǎn).

(1)求證:∠PAC=2∠CBE;

(2)若PD=m,∠CBE=α,請寫出求線段CE長的思路.

查看答案和解析>>

同步練習(xí)冊答案