【題目】若關于x的一元二次方程(m+1)x2﹣2x﹣1=0有兩個不相等的實數根,
(1)求m的取值范圍;
(2)若x=1是方程的一個根,求m的值和另一個根.
科目:初中數學 來源: 題型:
【題目】如圖,有一個可以自由轉動的轉盤被平均分成4個扇形,分別標有1、2、3、4四個數字,小王和小李各轉動一次轉盤為一次游戲.當每次轉盤停止后,指針所指扇形內的數為各自所得的數,一次游戲結束得到一組數(若指針指在分界線時重轉).(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現的所有結果;(2)求每次游戲結束得到的一組數恰好是方程x2﹣4x+3=0的解的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5,過點A1、A2、A3、A4、A5分別作x軸的垂線與反比例函數y=(x≠0)的圖象相交于點P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2,A2P3A3,A3P4A4,A4P5A5,并設其面積分別為S1、S2、S3、S4、S5,則S10=_____.(n≥1的整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC交⊙O于E點,BC交⊙O于D點,CD=BD,∠C=70°.現給出以下四種結論:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2.其中正確結論的序號是( )
A. ①② B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:二次函數y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上,
(1)求拋物線的表達式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)若拋物線上有一動點M(點C除外),使△ABM的面積等于△ABC的面積,求M點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點A逆時針旋轉90°得到△ADE,BC的延長線交DE于F,連接BD,若BC=2EF,試證明△BED是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上(不與A、B重合),∠ACB的平分線交AB于E,交⊙O于D,則下列結論不正確的是( )
A. AB2=2BD2 B. ACBC=CECD
C. BD2=DEDC D. ACBC+BD2=AB2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C為AB延長線上一點,過點C作⊙O的切線CD,D為切點,點F是弧AD的中點,連接OF并延長交CD于點E,連接BD,BF.
(1)求證:BD∥OE;
(2)若OE=3,tanC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數量關系.
【發(fā)現證明】小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現EF=BE+FD,請你利用圖(1)證明上述結論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD;請證明你的結論.
【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現要在E、F之間修一條筆直道路,求這條道路EF的長.(結果取整數,參考數據: =1.41, =1.73)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com