【題目】ABCD中,ABBC9,∠BCD120°.點M從點A出發(fā)沿射線AB方向移動.同時點N從點B出發(fā),以相同的速度沿射線BC方向移動,連接AN,CM,直線AN、CM相交于點P

1)如圖甲,當點M、N分別在邊AB、BC上時,

求證:ANCM

連接MN,當△BMN是直角三角形時,求AM的值.

2)當MN分別在邊AB、BC的延長線上時,在圖乙中畫出點P,并直接寫出∠CPN的度數(shù).

【答案】(1)①見解析②36(2)120°

【解析】

1)①連接AC,先證ABC是等邊三角形得ABCA9、∠B=∠CAB60°,由BNAMABN≌△CAM即可得;

②分∠MNB90°和∠NMB90°兩種情況,由∠B60°得出另一個銳角為30°,根據(jù)直角三角形中30°角所對邊等于斜邊的一半及AMBN求解可得;

2)根據(jù)題意作出圖形,連接AC,先證BAN≌△ACM得∠N=∠M,由∠NCP=∠MCB知∠CPN=∠CBM,根據(jù)ABCD、∠BCD120°可得∠CPN=∠CBM120°

1)①如圖1,連接AC,

ABCD中,ABDC,

∴∠B180°﹣∠BCD180°120°60°,

又∵ABBC9,

∴△ABC是等邊三角形,

ABCA9,∠B=∠CAB60°

又∵BNAM,

∴△ABN≌△CAMSAS),

ANCM

②如圖2

(Ⅰ)當∠MNB90°時,

∵∠B60°,

∴∠BMN90°60°30°,

BNBM,

又∵BNAM,

AM9AM),

AM3

(Ⅱ)當∠NMB90°時,∠BNM90°60°30°,

BMBN

9AMAM,

AM6;

綜上所述,當BMN是直角三角形時,AM的值為36

2)如圖3所示,

P即為所求;

CPN120°,

連接AC,

由(1)知ABC是等邊三角形,

∴∠BAN=∠CAM60°、ABCA,

又∵BNAM,

∴△BAN≌△ACMSAS),

∴∠N=∠M,

∵∠NCP=∠MCB,

∴∠CPN=∠CBM,

ABCD,∠BCD120°,

∴∠CPN=∠CBM120°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數(shù))經(jīng)過A(0,2)、B(4,0)兩點.

(1)求該拋物線的解析式和頂點坐標;

(2)作垂直x軸的直線x=t,在第一象限交直線ABM,交這條拋物線于N,求當t取何值時,MN有最大值?最大值是多少?

(3)在(1)的情況下,以A、M、N、D為頂點作平行四邊形,請直接寫出第四個頂點D的所有坐標(直接寫出結(jié)果,不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于點A、B,以AB為邊在第一象限內(nèi)作直角三角形ABC,且∠BAC=90°,tan∠ABC=

(1)求點C的坐標;

(2)在第一象限內(nèi)有一點M(1,m),且點M與點C位于直線AB的同側(cè),使得2SABM=SABC,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠BAC=2∠C,∠BAC的平分線AE與ABC的平分線BD相交于點F,F(xiàn)GAC,聯(lián)結(jié)DG.

(1)求證:BFBC=ABBD;

(2)求證:四邊形ADGF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.

(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;

(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,已知AB=2BC=,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE翻折得到多邊形AB’C’E,B、C的對應(yīng)點分別為點B’,C’

1)當點E與點C重合時,求DF的長

2)如果點MCD的中點,那么在點E從點C移動到點D的過程中,求C’M的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小馬虎做一道數(shù)學(xué)題,已知兩個多項式,,試求.”其中多項式的二次項系數(shù)印刷不清楚.

1)小馬虎看答案以后知道,請你替小馬虎求出系數(shù);

2)在(1)的基礎(chǔ)上,小馬虎已經(jīng)將多項式正確求出,老師又給出了一個多項式,要求小馬虎求出的結(jié)果.小馬虎在求解時,誤把看成,結(jié)果求出的答案為.請你替小馬虎求出的正確答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(4, )B-1,2)是一次函數(shù)y=kx+b與反比例函數(shù)y= (m≠0,m0)圖象的兩個交點,ACx軸于C,BDy軸于D

(1)、根據(jù)圖象直接回答:在第二象限內(nèi),當x取何值時,一次函數(shù)大于反比例函數(shù)的值?

(2)、求一次函數(shù)解析式及m的值;

(3)、P是線段AB上的一點,連接PC,PD,若△PCA△PDB面積相等,求點P坐標。

查看答案和解析>>

同步練習(xí)冊答案