(2013•舟山)如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為( 。
分析:先根據(jù)垂徑定理求出AC的長,設⊙O的半徑為r,則OC=r-2,由勾股定理即可得出r的值,故可得出AE的長,連接BE,由圓周角定理可知∠ABE=90°,在Rt△BCE中,根據(jù)勾股定理即可求出CE的長.
解答:解:∵⊙O的半徑OD⊥弦AB于點C,AB=8,
∴AC=
1
2
AB=4,
設⊙O的半徑為r,則OC=r-2,
在Rt△AOC中,
∵AC=4,OC=r-2,
∴OA2=AC2+OC2,即r2=42+(r-2)2,解得r=5,
∴AE=2r=10,
連接BE,
∵AE是⊙O的直徑,
∴∠ABE=90°,
在Rt△ABE中,
∵AE=10,AB=8,
∴BE=
AE2-AB2
=
102-82
=6,
在Rt△BCE中,
∵BE=6,BC=4,
∴CE=
BE2+BC2
=
62+42
=2
13

故選D.
點評:本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•舟山)如圖,在平面直角坐標系xOy中,拋物線y=
1
4
(x-m)2-
1
4
m2+m的頂點為A,與y軸的交點為B,連結AB,AC⊥AB,交y軸于點C,延長CA到點D,使AD=AC,連結BD.作AE∥x軸,DE∥y軸.
(1)當m=2時,求點B的坐標;
(2)求DE的長?
(3)①設點D的坐標為(x,y),求y關于x的函數(shù)關系式?②過點D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個交點為P,當m為何值時,以,A,B,D,P為頂點的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•舟山)如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側面.為了獲得較佳視覺效果,字樣在罐頭盒側面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•舟山)如圖,△ABC與△DCB中,AC與BD交于點E,且∠A=∠D,AB=DC.
(1)求證:△ABE≌DCE;
(2)當∠AEB=50°,求∠EBC的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•舟山)如圖,正方形ABCD的邊長為3,點E,F(xiàn)分別在邊AB、BC上,AE=BF=1,小球P從點E出發(fā)沿直線向點F運動,每當碰到正方形的邊時反彈,反彈時反射角等于入射角.當小球P第一次碰到點E時,小球P所經(jīng)過的路程為
6
5
6
5

查看答案和解析>>

同步練習冊答案