已知:△ABC中,AD是高,BE⊥AB,BE=CD,CF⊥AC,CF=BD.求證:AE=AF.

證明:∵AD⊥BC,
∴AB2=AD2+BD2,AC2=AD2+CD2
∵BE⊥AB,
∴AE2=AB2+BE2=AD2+BD2+BE2,
∵CF⊥AC,
∴AF2=AC2+CF2=AD2+CD2+CF2,
∵BE=CD,CF=BD,
∴AE=AF.
分析:先根據(jù)勾股定理用AB、BE、AD、BD表示出AE的值,用AD、CD、AC、CF表示出AF的值,再根據(jù)BE=CD,CF=BD進(jìn)行解答即可.
點(diǎn)評(píng):本題考查的是勾股定理,即如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,現(xiàn)將△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(45°<α<135°)得到△DCE,設(shè)直線DE與直線AB相交于點(diǎn)P,連接CP.
精英家教網(wǎng)
(1)當(dāng)CD⊥AB時(shí)(如圖1),求證:PC平分∠EPA;
(2)當(dāng)點(diǎn)P在邊AB上時(shí)(如圖2),求證:PE+PB=6;
(3)在△ABC旋轉(zhuǎn)過程中,連接BE,當(dāng)△BCE的面積為
25
4
3
時(shí),求∠BPE的度數(shù)及PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,已知在△ABC中,AD垂直平分BC,AC=EC,點(diǎn)B、D、C、E在同一直線上,則下列結(jié)論:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正確的個(gè)數(shù)有( 。﹤(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,有一個(gè)角為60°,S△ABC=10
3
,周長(zhǎng)為20,則三邊長(zhǎng)分別為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,點(diǎn)D、E分別是AB、AC上的點(diǎn),以AE為直徑的⊙O與過B點(diǎn)的⊙P精英家教網(wǎng)外切于點(diǎn)D,若AC和BC邊的長(zhǎng)是關(guān)于x的方程x2-(AB+4)x+4AB+8=0的兩根,且25BC•sinA=9AB,
(1)求△ABC三邊的長(zhǎng);
(2)求證:BC是⊙P的切線;
(3)若⊙O的半徑為3,求⊙P的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案