圖(1)是一個長為2a,寬為2b(a>b)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個正方形,則中間空的部分的面積是

[  ]

A.ab

B.(a+b)2

C.(a-b)2

D.a2-b2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.

(1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于
m-n
;
(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法①
(m+n)2-4mn
.方法②
(m-n)2

(3)觀察圖②,你能寫出(m+n)2,(m-n)2,mn這三個代數(shù)式之間的等量關(guān)系嗎?
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:若a+b=6,ab=4,則求(a-b)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

29、如圖①所示是一個長為2a,寬為2b的長方形,沿圖中虛線用一個剪刀平均分成四個小長方形,然后按照圖②的方式拼成一個長方形.

(1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于
a-b

(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法一:
(a-b)2
方法二:
(a+b)2-4ab

(3)觀察圖②,你能寫出(a+b)2、(a-b)2、ab這三個代數(shù)式之間的等量關(guān)系式嗎?
(4)根據(jù)上式中的等量關(guān)系,解決下列問題:若a+b=6,ab=8,求(a-b)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀將其均分成四個完全相同的小長方形,然后按圖2的形狀拼圖.
(1)圖2中的圖形陰影部分的邊長為
m-n
m-n
;(用含m、n的代數(shù)式表示)
(2)請你用兩種不同的方法分別求圖2中陰影部分的面積;
方法一:
(m-n)2
(m-n)2
;
方法二:
(m+n)2-4mn
(m+n)2-4mn

(3)觀察圖2,請寫出代數(shù)式(m+n)2、(m-n)2、4mn之間的關(guān)系式:
(m+n)2-4mn=(m-n)2
(m+n)2-4mn=(m-n)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.

(1)圖②中的陰影部分的小正方形的邊長
(m-n)
(m-n)
;大正方形的邊長=
(m+n)
(m+n)

(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
(3)觀察圖②,請寫出(m+n)2,(m-n)2,mn這三個代數(shù)式之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于
m-n
m-n

(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法①
(m+n)2-4mn
(m+n)2-4mn

方法②
(m-n)2
(m-n)2

(3)觀察圖,你能寫出(m+n)2,(m-n)2,mn這三個代數(shù)式之間的等量關(guān)系嗎?
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:若a+b=3,ab=2,則求(a-b)2

查看答案和解析>>

同步練習(xí)冊答案