如圖,⊙O的弦ADBC,過點(diǎn)D的切線交BC的延長(zhǎng)線于點(diǎn)E,ACDE交BD于點(diǎn)H,DO及延長(zhǎng)線分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.
(1)證明:∵DE是⊙O的切線,且DF過圓心O,
∴DF是⊙O的直徑所在的直線,
∴DF⊥DE,
又∵ACDE,
∴DF⊥AC,
∴G為AC的中點(diǎn),即DF平分AC,則DF垂直平分AC;(2分)

(2)證明:由(1)知:AG=GC,
又∵ADBC,
∴∠DAG=∠FCG;
又∵∠AGD=∠CGF,
∴△AGD≌△CGF(ASA),(4分)
∴AD=FC;
∵ADBC且ACDE,
∴四邊形ACED是平行四邊形,
∴AD=CE,
∴FC=CE;(5分)

(3)連接AO,
∵AG=GC,AC=8cm,
∴AG=4cm;
在Rt△AGD中,由勾股定理得GD2=AD2-AG2=52-42=9,
∴GD=3;(6分)
設(shè)圓的半徑為r,則AO=r,OG=r-3,
在Rt△AOG中,由勾股定理得AO2=OG2+AG2,
有:r2=(r-3)2+42,
解得r=
25
6
,(8分)
∴⊙O的半徑為
25
6
cm.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA、PB分別切⊙O于A、B,PA=10cm,C是劣弧AB上的點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)C的切線分別交PA、PB于點(diǎn)E、F.則△PEF的周長(zhǎng)為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的直徑AB與弦CD相交于點(diǎn)E,AB⊥CD,⊙O的切線BF與弦AD的延長(zhǎng)線相交于點(diǎn)F.
(1)求證:CDBF;
(2)若⊙O的半徑為5,cos∠BCD=
4
5
,求線段AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖四邊形ABCD內(nèi)接于⊙O,AB為直徑,PD切⊙O于D,與BA延長(zhǎng)線交于P點(diǎn),已知∠BCD=130°,則∠ADP=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,△ABC的外接圓圓心O在AB上,點(diǎn)D是BC延長(zhǎng)線上一點(diǎn),DM⊥AB于M,交AC于N,且AC=CD.CP是△CDN的邊ND上的中線.
(1)求證:AB=DN;
(2)試判斷CP與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若PC=5,CD=8,求線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一個(gè)油桶靠在墻邊,量得WY=2m,并且XY⊥WY,這個(gè)油桶的底面半徑是______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠ACB=60°,半徑為2的⊙0切BC于點(diǎn)C,若將⊙O在CB上向右滾動(dòng),則當(dāng)滾動(dòng)到⊙O與CA也相切時(shí),圓心O移動(dòng)的水平距離為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在半徑為4的⊙O中,點(diǎn)C是以AB為直徑的半圓的中點(diǎn),OD⊥AC,垂足為D,點(diǎn)E是射線AB上的任意一點(diǎn),DFAB,DF與CE相交于點(diǎn)F,設(shè)EF=x,DF=y.
(1)如圖1,當(dāng)點(diǎn)E在射線OB上時(shí),求y關(guān)于x的函數(shù)解析式,并寫出函數(shù)定義域;
(2)如圖2,當(dāng)點(diǎn)F在⊙O上時(shí),求線段DF的長(zhǎng);
(3)如果以點(diǎn)E為圓心、EF為半徑的圓與⊙O相切,求線段DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的切線,A為切點(diǎn),AC是⊙O的弦,過O作OH⊥AC于點(diǎn)H.若OH=2,AB=12,BO=13.則sin∠OAC的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案