(本題滿分10分)如圖(1),點(diǎn)M、N分別是正方形ABCD的邊AB、AD的中點(diǎn),連接CN、DM.
(1)判斷CN、DM的數(shù)量關(guān)系與位置關(guān)系,并說明理由;
(2)如圖(2),設(shè)CN、DM的交點(diǎn)為H,連接BH,求證:△BCH是等腰三角形;
(3)將△ADM沿DM翻折得到△A′DM,延長MA′交DC的延長線于點(diǎn)E,如圖(3),求tan∠DEM.
23.(1)CN=DM,CN⊥DM,
證明:∵點(diǎn)M、N分別是正方形ABCD的邊AB、AD的中點(diǎn)
∴AM=DN.AD=DC.∠A=∠CDN
∴△AMD≌△DNC,
∴CN=DM.∠CND=∠AMD
∴∠CND+∠NDM=∠AMD+∠NDM=900
∴CN⊥DM
∴CN=DM,CN⊥DM…………………………………………3分
(2)證明:延長DM、CB交于點(diǎn)P.
∵AD∥BC ,∴∠MPC=∠MDA,∠A=∠MBP
∵ MA=MB △AMD≌△BMP,∴ BP=AD=BC.
∵∠CHP=900 ∴BH=BC,即△BCH是等腰三角形……………………6分
(3)∵AB∥DC ∴∠EDM=∠AMD=∠DME ∴EM=ED
設(shè)AD=A′D=4k,則A′M=AM=2k,
∴DE=EA′+2k.在Rt△DA′E中,A′D2+A′E2=DE2
∴(4k)2+A′E2=(EA′+2k)2解得A′E=3k,
∴tan∠DEM=A′D:A′E=.………………………………10分
解析:略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分10分)
如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標(biāo)系中,動點(diǎn)M、N以每秒1個(gè)單位的速度分別從點(diǎn)A、C同時(shí)出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個(gè)動點(diǎn)運(yùn)動了t秒時(shí),過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.
(1)點(diǎn)B的坐標(biāo)為 ;用含t的式子表示點(diǎn)P的坐標(biāo)為 ;(3分)
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0 < t < 6);并求t為何值時(shí),S有最大值?(4分)
(3)試探究:當(dāng)S有最大值時(shí),在y軸上是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.(3分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年江蘇省泰州市中考數(shù)學(xué)試卷 題型:解答題
(本題滿分10分)如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點(diǎn)M,OM的延長線與BC相交于點(diǎn)N。
(1)點(diǎn)N是線段BC的中點(diǎn)嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com