已知:如圖,在直角梯形ABCD中,AD∥BC,DC⊥BC,P是邊AB上一動(dòng)點(diǎn),PE⊥CD,垂足為點(diǎn)E,PM⊥AB,交邊CD于點(diǎn)M,AD=1,AB=5,CD=4.
(1)求證:∠PME=∠B;
(2)設(shè)A、P兩點(diǎn)的距離為x,EM=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(3)連接PD,當(dāng)△PDM是以PM為腰的等腰三角形時(shí),求AP的長(zhǎng).

【答案】分析:(1)在四邊形BCMP中,求出∠B+∠CMP=180°,又知∠PME+∠CMP=180°,于是證明出∠PME=∠B;
(2)作AH⊥BC于H,交PE于點(diǎn)F,首先證明出AF⊥PE,由于PF∥BH,列出比例等式,用x表示出PF和PE,再由△PEM∽△AHB列出y與x的關(guān)系式;
(3)分類(lèi)討論,當(dāng)PM=PD和PM=DM分別根據(jù)等腰三角形的性質(zhì)求出x的值,進(jìn)而求出AP的值.
解答:(1)證明:證法一:在四邊形BCMP中,
∵∠B+∠C+∠CMP+∠MPB=360°,∠C=∠MPB=90°
∴∠B+∠CMP=180°. 
而∠PME+∠CMP=180°,
∴∠PME=∠B. 
證法二:∵DC⊥BC,PM⊥AB,且∠PME與∠B都為銳角,
∴∠PME=∠B.
(2)解:作AH⊥BC于H,交PE于點(diǎn)F.
∵PE⊥CD,BC⊥CD,
∴PE∥BC.
∴AF⊥PE.
∵AH=CD=4,AB=5,
∴BH=3.
∵AD=1,
∴EF=1.
∵PF∥BH,
,
∴PF=x,
∴PE=x+1.
又∵∠PME=∠B,∠PEM=∠AHB=90°,
∴△PEM∽△AHB. 
,即.  

∵PE=x+1≤BC=4,
∴x≤,
定義域?yàn)?≤x≤.  
(3)解:(ⅰ)當(dāng)PM=PD時(shí),DE=EM.

解得,即.  
(ⅱ)當(dāng)PM=DM時(shí),. 
解得x=1,即AP=1. 
綜上所述,當(dāng)△PDM是以PM為腰的等腰三角形時(shí),或AP=1.
點(diǎn)評(píng):本題主要考查相似形的綜合題,本題涉及了線段成比例的性質(zhì),相似三角形的判定與性質(zhì),等腰三角形的判定的知識(shí),此題綜合性較強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年河南省周口市初一下學(xué)期相交線與平行線專(zhuān)項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動(dòng)點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)

單位長(zhǎng)度的速度向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止

運(yùn)動(dòng),設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時(shí)△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過(guò)原點(diǎn)O時(shí),請(qǐng)直接寫(xiě)出t的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年河南省周口市初一下學(xué)期平移專(zhuān)項(xiàng)訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動(dòng)點(diǎn)P從O出發(fā)沿OA方向,以每秒1個(gè)

單位長(zhǎng)度的速度向A點(diǎn)勻速運(yùn)動(dòng),到達(dá)A點(diǎn)后立即以原速沿AO返回;點(diǎn)Q從A點(diǎn)出發(fā)

沿AB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B勻速運(yùn)動(dòng).當(dāng)Q到達(dá)B時(shí),P、Q兩點(diǎn)同時(shí)停止

運(yùn)動(dòng),設(shè)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).

(1) 試求出△APQ的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式;

(2) 在某一時(shí)刻將△APQ沿著PQ翻折,使得點(diǎn)A恰好落在AB邊的點(diǎn)D處,如圖①.

求出此時(shí)△APQ的面積.

(3) 在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,在y軸上是否存在著點(diǎn)E使得四邊形PQBE為等腰梯

形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(4) 伴隨著P、Q兩點(diǎn)的運(yùn)動(dòng),線段PQ的垂直平分線DF交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)F. 當(dāng)DF經(jīng)過(guò)原點(diǎn)O時(shí),請(qǐng)直接寫(xiě)出t的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案