如圖,E是正方形ABCD中CD邊上的一點,AB=,把△ADE 繞點A旋轉(zhuǎn)后得△ABF,∠EAF的平分線交BC于點G,連接GE.
(1)求證:EG=FG;
(2)若∠DAE=15°,求GE的長;
(3)當點E位于何處時,△ADE與△CGE相似?并說明理由.

【答案】分析:(1)根據(jù)SAS證△ADE≌△ABF,推出AE=AF,∠DAE=∠BAF,∠F=∠DEA,根據(jù)SAS證△EAG≌△FAG,根據(jù)全等三角形的性質(zhì)推出即可;
(2)求出∠FAG=45°,∠FAB=15°,求出∠BAG=30°,求出BG,求出CG長,求出∠EGC=60°,求出∠GEC的度數(shù),即可求出EG;
(3)分為兩種情況:當∠AED=∠GEC或∠AED=∠EGC,根據(jù)相似得出比例式,求出當∠AED=∠EGC時,E和D重合(不存在三角形ADE,舍去),根據(jù)相似得出∠AED=∠AEG=∠GEC=60°,在Rt△ADE中求出DE即可.
解答:(1)證明:
∵四邊形ABCD是正方形,
∴∠DAB=∠ABC=∠D=∠C=90°,AB=BC=AD=CD=,
∵△ADE 繞點A旋轉(zhuǎn)后得△ABF,
∴△ADE≌△ABF,
∴AE=AF,∠DAE=∠FAB,
∵∠BAD=∠DAE+∠EAB=90°,
∴∠EAF=∠FAB+∠EAB=90°,
∵∠ABF=∠D=90°∠BAF=∠DAE,
∴∠FBG=∠ABF+∠ABC=180°,即點F、B、G在同一直線上,
∵AG平分∠EAF,
∴∠EAG=∠FAG,
在△AEG和△AFG中
,
∴△AEG≌△AFG(SAS),
∴EG=FG.

(2)解:∵∠FAG=∠EAG=∠EAF=45°,∠BAF=∠DAE=15°,
∴∠BAG=∠FAG-∠BAF=30°,
∴BG=ABtan∠BAG=×=1,
∴CG=BC-BG=-1,
∵△AEG≌△AFG,
∴∠AGE=∠AGB=90°-∠BAG=60°,
∴∠EGC=180°-∠AGE-∠AGB=60°,
∵∠C=90°,
∴∠CEG=30°,
∴EG=2CG=2(-1)=2-2.

(3)解:當DE=1時,△ADE與△CGE相似,
理由是:∵∠D=∠C=90°,
∴當∠AED=∠GEC或∠AED=∠EGC時,△ADE與△CGE相似
∵△ADE≌△ABF,△AEG≌△AFG,
∴∠AED=∠AFG=∠AEG,
當∠AED=∠EGC時,∠EGC=∠AEG,則AE∥GC,此時D與E重合,△ADE不存在;
當∠AED=∠GEC時,∠AED=∠GEC=∠AEG=60°,
∵∠D=90°,
∴∠ADE=30°,
∵AD=,
∴由勾股定理得:DE=1,
∴CE=-1,
∴當DE=1時,△ADE與△CGE相似.
點評:本題考查了相似三角形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,正方形的性質(zhì),含30度角的直角三角形等知識點,主要考查學生綜合運用性質(zhì)進行推理的能力,題目綜合性比較強,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,E是正方形ABCD對角線AC上一點,EF⊥AB,EG⊥BC,F(xiàn)、G是垂足,若正方形ABCD周長為a,則EF+EG等于( 。
A、
1
4
a
B、
1
2
a
C、a
D、2a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,已知△ABC中,AB=AC,點P是BC上的一點,PN⊥AC于點N,PM⊥AB于點M,CG⊥AB于點G點.
(1)則CG、PM、PN三者之間的數(shù)量關系是
 

(2)如圖②,若點P在BC的延長線上,則PM、PN、CG三者是否還有上述關系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關系,并證明你的猜想;
(3)如圖③,AC是正方形ABCD的對角線,AE=AB,點P是BE上任一點,PN⊥AB于點N,PM⊥AC于點M,猜想PM、PN、AC有什么關系;(直接寫出結(jié)論)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,ABCD是正方形,P是對角線BD上一點,過P點作直線EF、GH分別平行于AB、BC,交兩組對邊于E、F、G、H,則四邊形PEDG,四邊形PHBF都是正方形,四邊形PEAH、四邊形PGCF都是矩形,設正方形PEDG的邊長是a,正方形PHBF的邊長是b. 請動手實踐并得出結(jié)論:
(1)請你動手測量一些線段的長后,計算正方形PEDG與正方形PHBF的面積之和以及矩形PEAH與矩形PGCF的面積之和.
(2)你能根據(jù)(1)的結(jié)果判斷a2+b2與2ab的大小嗎?
(3)當點P在什么位置時,有a2+b2=2ab?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖四邊形AOBC是正方形,點C的坐標是(4
2
,0),動點P、Q同時從點O出發(fā),點P沿著折線OACB的方向運動;點Q沿著折線OBCA的方向運動,設運動時間為t.
(1)求出經(jīng)過O、A、C三點的拋物線的解析式.
(2)若點Q的運動速度是點P的2倍,點Q運動到邊BC上,連接PQ交AB于點R,當AR=3
2
時,請求出直線PQ的解析式.
(3)若點P的運動速度為每秒1個單位長度,點Q的運動速度為每秒2個單位長度精英家教網(wǎng),兩點運動到相遇停止.設△OPQ的面積為S.請求出S關于t的函數(shù)關系式以及自變量t的取值范圍.
(4)判斷在(3)的條件下,當t為何值時,△OPQ的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AC是正方形ABCD的對角線,點O是AC的中點,點Q是AB上一點,連接CQ,DP⊥CQ于點E,交BC于精英家教網(wǎng)點P,連接OP,OQ;
求證:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

同步練習冊答案