精英家教網 > 初中數學 > 題目詳情

如圖1,直線AB過點A(m,0),B(0,n),且m+n=20(其中m>0,n>0)。

(1)m為何值時,△OAB面積最大?最大值是多少?

(2)如圖2,在(1)的條件下,函數的圖像與直線AB相交于C、D兩點,若,求k的值。

(3)在(2)的條件下,將△OCD以每秒1個單位的速度沿x軸的正方向平移,如圖3,設它與△OAB的重疊部分面積為S,請求出S與運動時間t(秒)的函數關系式(0<t<10)。

(1)Q=40-6t (t的范圍可不寫);(2)31;(3)400公里

【解析】

試題分析:(1)通過表中數據不難發(fā)現用行駛時間t表示余油量Q的代數式為 Q=40-6t;

(2)將代入一次函數關系式Q=40-6t,即可求得余油量Q;

(3)首先根據用行駛時間t表示余油量Q的代數式為 Q=40-6t,求得油箱中的油量能行駛的最多時間(即Q=0時).再根據行駛里程=速度×時間,確定油箱中原有汽油可供汽車行駛的最大距離.

(1)由題意得Q=40-6t;

(2)當時,Q=40-6×=31(升);

(3)由40-6t=0解得t=

∴60×=400.

答:油箱中原有汽油可供汽車行駛400公里.

考點:一元一次方程的應用、列代數式、代數式求值

點評:解決本題關鍵是要讀懂題目的意思,用代數式、方程表示出題目中的文字語言.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•深圳)如圖1,直線AB過點A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m為何值時,△OAB面積最大?最大值是多少?
(2)如圖2,在(1)的條件下,函數y=
k
x
(k>0)
的圖象與直線AB相交于C、D兩點,若S△OCA=
1
8
S△OCD
,求k的值.
(3)在(2)的條件下,將△OCD以每秒1個單位的速度沿x軸的正方向平移,如圖3,設它與△OAB的重疊部分面積為S,請求出S與運動時間t(秒)的函數關系式(0<t<10).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖1,直線AB過點A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m為何值時,△OAB面積最大?最大值是多少?
(2)如圖2,在(1)的條件下,函數數學公式的圖象與直線AB相交于C、D兩點,若數學公式,求k的值.
(3)在(2)的條件下,將△OCD以每秒1個單位的速度沿x軸的正方向平移,如圖3,設它與△OAB的重疊部分面積為S,請求出S與運動時間t(秒)的函數關系式(0<t<10).

查看答案和解析>>

科目:初中數學 來源:2013年廣東省深圳市中考數學試卷(解析版) 題型:解答題

如圖1,直線AB過點A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m為何值時,△OAB面積最大?最大值是多少?
(2)如圖2,在(1)的條件下,函數的圖象與直線AB相交于C、D兩點,若,求k的值.
(3)在(2)的條件下,將△OCD以每秒1個單位的速度沿x軸的正方向平移,如圖3,設它與△OAB的重疊部分面積為S,請求出S與運動時間t(秒)的函數關系式(0<t<10).

查看答案和解析>>

科目:初中數學 來源:2013年初中畢業(yè)升學考試(廣東深圳卷)數學(解析版) 題型:解答題

如圖1,直線AB過點A(m,0),B(0,n),且m+n=20(其中m>0,n>0)。

(1)m為何值時,△OAB面積最大?最大值是多少?

(2)如圖2,在(1)的條件下,函數的圖像與直線AB相交于C、D兩點,若,求k的值。

(3)在(2)的條件下,將△OCD以每秒1個單位的速度沿x軸的正方向平移,如圖3,設它與△OAB的重疊部分面積為S,請求出S與運動時間t(秒)的函數關系式(0<t<10)。

 

查看答案和解析>>

同步練習冊答案