如圖,在△ABC中,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點(diǎn)F,請(qǐng)你判斷并寫出FE與FD之間的數(shù)量關(guān)系;請(qǐng)說明理由.
分析:方法一:在AC上截取AG=AE,連接FG,根據(jù)“邊角邊”證明△AEF和△AGF全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠AFE=∠AFG,全等三角形對(duì)應(yīng)邊相等可得FE=FG,再根據(jù)角平分線的定義以及三角形的內(nèi)角和定理推出∠2+∠3=60°,從而得到∠AFE=∠CFD=∠AFG=60°,然后根據(jù)平角等于180°推出∠CFG=60°,然后利用“角邊角”證明△CFG和△CFD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得FG=FD,從而得證;
方法二:過點(diǎn)F分別作FG⊥AB于點(diǎn)G,F(xiàn)H⊥BC于點(diǎn)H,根據(jù)三角形內(nèi)心的性質(zhì)可得FG=FH,再根據(jù)角平分線的定義以及三角形的內(nèi)角和定理推出∠2+∠3=60°,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和證明∠GEF=∠HDF,再利用“角角邊”證明△EGF和△DHF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可證明.
解答:解:FE=FD.
理由如下:方法一:如圖1,在AC上截取AG=AE,連接FG,
∵AD是∠BAC的平分線,
∴∠1=∠2,
在△AEF和△AGF中,
AG=AE
∠1=∠2
AF=AF
,
∴△AEF≌△AGF(SAS),
∴∠AFE=∠AFG,F(xiàn)E=FG,
∵∠B=60°,
∴∠BAC+∠ACB=180°-60°=120°,
∵AD、CE分別是∠BAC、∠BCA的平分線,
∴∠2=
1
2
∠BAC,∠3=
1
2
∠ACB,
∴∠2+∠3=
1
2
(∠BAC+∠ACB)=
1
2
×120°=60°,
∴∠AFE=∠CFD=∠AFG=60°.
∴∠CFG=180°-∠AFG-∠CFD=180°-60°-60°=60°,
∴∠CFG=∠CFD,
∵CE是∠BCA的平分線,
∴∠3=∠4,
在△CFG和△CFD中,
∠CFG=∠CFD
FC=FC
∠3=∠4
,
∴△CFG≌△CFD(ASA),
∴FG=FD,
∴FE=FD;

方法二:如圖2,過點(diǎn)F分別作FG⊥AB于點(diǎn)G,F(xiàn)H⊥BC于點(diǎn)H,
∵F是△ABC的內(nèi)心,
∴FG=FH,
∵∠B=60°,
∴∠BAC+∠ACB=180°-60°=120°,
∵AD、CE分別是∠BAC、∠BCA的平分線,
∴∠2=
1
2
∠BAC,∠3=
1
2
∠ACB,
∴∠2+∠3=
1
2
(∠BAC+∠ACB)=
1
2
×120°=60°,
∴∠AFE=∠2+∠3=60°,
∴∠GEF=60°+∠1,
又∵∠HDF=∠B+∠1=60°+∠1,
∴∠GEF=∠HDF,
在△EGF和△DHF中,
∠EGF=∠DHF=90°
∠GEF=∠HDF
FG=FH

∴△EGF≌△DHF(AAS),
∴FE=FD.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì),角平分線的定義,三角形的內(nèi)角和定理,以及三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),根據(jù)所求角度正好等于60°得到角相等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案