科目:初中數(shù)學(xué) 來源: 題型:
【答案】14。
【考點】軸對稱-最短路線問題;勾股定理;垂徑定理.
【專題】探究型.
【分析】先由MN=20求出⊙O的半徑,再連接OA、OB,由勾股定理得出OD、OC的長,作點B關(guān)于MN的對稱點B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點B′作AC的垂線,交AC的延長線于點E,在Rt△AB′E中利用勾股定理即可求出AB′的值.
【解答】∵M(jìn)N=20,
∴⊙O的半徑=10,
連接OA、OB,
在Rt△OBD中,OB=10,BD=6,
∴OD===8;
同理,在Rt△AOC中,OA=10,AC=8,
∴OC===6,
∴CD=8+6=14,
作點B關(guān)于MN的對稱點B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點B′作AC的垂線,交AC的延長線于點E,
在Rt△AB′E中,
∵AE=AC+CE=8+6=14,B′E=CD=14,
∴AB′===14.
故答案為:14.
【點評】本題考查的是軸對稱-最短路線問題、垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com