直角坐標(biāo)系中,已知A(1,0),以點(diǎn)A為圓心畫圓,點(diǎn)M(4,4)在⊙A上,直線y=-數(shù)學(xué)公式x+b過(guò)點(diǎn)M,分別交x軸、y軸于B、C兩點(diǎn).
(1)①填空:⊙A的半徑為________,b=________.(不需寫解答過(guò)程)
②判斷直線BC與⊙A的位置關(guān)系,并說(shuō)明理由.
(2)若EF切⊙A于點(diǎn)F分別交AB和BC于G、E,且FE⊥BC,求數(shù)學(xué)公式的值.
(3)若點(diǎn)P在⊙A上,點(diǎn)Q是y軸上一點(diǎn)且在點(diǎn)C下方,當(dāng)△PQM為等腰直角三角形時(shí),直接寫出點(diǎn)Q的坐標(biāo).

(1)①解:連接AM,過(guò)M作MQ⊥x軸于Q,
則AQ=4-1=3,MQ=4,
由勾股定理得:AM==5,
把M(4,4)代入y=-x+b得:4=-×4+b,
∴b=7,
故答案為:5,7.

②解:相切,
理由是:連接AF,
y=-x+7,
當(dāng)x=0時(shí),y=7,∴C(0,7),OC=7,
當(dāng)y=0時(shí),0=-x+7,
∴x=,
∴B(,0),OB=
∴BQ=OB-OQ=-4=,AQ=4-1=3,MQ=4,
==,=
=,
∵∠MQA=∠MQB,
∴△AMQ∽△MBQ,
∴∠MAQ=∠BMQ,
∵∠MAQ+∠AMQ=90°,
∴∠AMQ+∠BMQ=90°,
∴AM⊥BC,
∴直線BC與⊙A的位置關(guān)系是相切.
(2)解:連接AC,
在△COB中,由勾股定理得:BC==,
同理AC=5
∵AM=5,由勾股定理得:CM=5,
設(shè)EG=a,
∵EF⊥BC,
∴∠FEB=∠COB=90°,
∵∠OBC=∠OBC,
∴△BEG∽△BOC,
=,
=
∴BE=a,
∴根據(jù)切線長(zhǎng)定理得:EM=EF=BC-BE-CM=-a-5,
∵EF⊥CB,AF⊥EF,
∴AF∥BC,
∴△AFG∽△BEG,
=,
=,
∴FG=,
∵BE+EM+CM=BC,
a+a++5=,
a=,
EG=,F(xiàn)G=,
==3.
(3)解:①當(dāng)∠PQM=90°時(shí),MQ=PQ,由對(duì)稱性M,P關(guān)于X軸對(duì)稱,
所以Q,O重合,Q(0,0);
②當(dāng)∠PMQ=90°,MQ=MP,作MD⊥x,MH⊥y,
可得△MHQ≌△MDP,
即P是圓與x正半軸交點(diǎn)
從而Q(0,2);
③當(dāng)∠QPM=90°時(shí),分兩種情況:
第一情況:P在y的左方,如圖,設(shè)P(m,n),Q(0,b)可得:
①4-m=n-b,②4-n=-m,③(1-m)2+n2=52,
解方程組得,b=2,b=-8(b=2也符合條件,雖與②中b同,但直角不同),
第二情況:P在y的右方,同理得:
①m-4=n-b,②4-n=m,③(1-m)2+n2=52,
解方程組得,b=3+(舍),b=3-
綜合上述:Q的坐標(biāo)是(0,0)或(0,2)或(0,-8)或(0,3-).
分析:(1)①連接AM,過(guò)M作MQ⊥x軸于Q,求出AQ、QM,根據(jù)勾股定理求出AM即可;把M的坐標(biāo)代入解析式,求出b即可;②求出B、C的坐標(biāo),證△AQM和△BQM相似,推出∠MAQ=∠BMQ,推出∠AMB=90°即可;
(2)設(shè)EG=a,根據(jù)勾股定理求出BC、AC、CM的值,根據(jù)△BEG和△BOC相似,求出BE的值,根據(jù)△BEG和△AFG相似,求出GF的值,根據(jù)BC=BE+EM+CM,代入求出a即可;
(3)有三種情況:①當(dāng)∠PQM=90°時(shí),MQ=PQ,根據(jù)軸對(duì)稱,得出Q與O重合,即可求出Q的坐標(biāo);②當(dāng)∠PMQ=90°,MQ=MP,作MD⊥x,MH⊥y,證△MHQ≌△MDP,推出P是圓與x正半軸交點(diǎn),即可求出答案;③當(dāng)∠QPM=90°時(shí),分兩種情況:第一情況:P在y的左方,設(shè)P(m,n),Q(0,b)得出方程①4-m=n-b,②4-n=-m,③(1-m)2+n2=52,解方程組即可求出b;第二情況:P在y的右方,同理能求出b的值.
點(diǎn)評(píng):本題綜合考查了勾股定理,等腰三角形性質(zhì),等腰直角三角形,切線的判定,相似三角形的性質(zhì)和判定,軸對(duì)稱性質(zhì),切線長(zhǎng)定理,直線與圓的位置關(guān)系等知識(shí)點(diǎn),主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理和計(jì)算能力,本題難度偏大,對(duì)學(xué)生提出了較高的要求,用力方程思想和分類討論思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y精英家教網(wǎng)軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知矩形OABC的兩個(gè)頂點(diǎn)坐標(biāo)A(3,0),B(3,2),對(duì)角線AC所在直線為l,求直線l對(duì)應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知點(diǎn)A(1,
3
),O是坐標(biāo)原點(diǎn).若連接OA,將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B的坐標(biāo)是(  )
A、(
3
,-1)
B、(
3
,-1)或(-
3
,1)
C、(-
3
,1)
D、以上答案都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知點(diǎn)P(4m-6,m-3)在第四象限,則m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸交于A(2,0),B(6,0)兩點(diǎn),交y軸于C(0,2
3
).
(1)求拋物線的解析式;  
(2)若此拋物線的對(duì)稱軸與直線y=2x交于點(diǎn)D,作⊙D與x軸相切,⊙D交y軸于點(diǎn)E、F兩點(diǎn),求劣弧EF的長(zhǎng);
(3)若點(diǎn)P是此拋物線上在第二象限圖象上的一點(diǎn),PG垂直于x軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線AC分為1:2兩部分.

查看答案和解析>>

同步練習(xí)冊(cè)答案